信号类型(通信)——最小频移键控(MSK)

系列文章目录

《信号类型(通信)——仿真》

《信号类型(通信)——QAM调制信号》

《信号类型(通信)——QPSK、OQPSK、IJF_OQPSK调制信号》


目录

 前言

一、MSK信号特点

1.1、最小频移

1.2、相位连续

二、MSK调制与解调

2.1、调制原理

2.2、解调原理

三、MSK信号频谱

四、仿真

总结


 前言

       本文为MSK调制信号的学习笔记,介绍了MSK调制起源,即MSK是一种特殊的FSK调制。并根据MSK信号特征由FSK信号模型推导了MSK的信号模型;并基于MSK信号模型介绍了MSK信号调制与解调原理;最后结合仿真加深对MSK信号调制与解调的理解。此外补充了MSK信号的频谱表达式,公式的具体推导没有研究,文后有参考文献,感兴趣的可以自行推导,也欢迎在评论区给出相应的推导过程。(文末有彩蛋)


一、MSK信号特点

        最小频移键控(MSK)调制方式是频移键控(FSK)调制方式的特例。相比于FSK调制,MSK调制满足两个条件:正交条件下最小频率间隔(最大频移为比特速率的1/4);信号相位连续。满足上述条件的MSK信号能量99.5%被限制在数据传输速率的1.5倍的带宽内。此外MSK属于恒包络数字调制技术,系统可以使用廉价高效的非线性器件。下面基于最小频移以及相位连续两个条件简单推导MSK信号模型。

1.1、最小频移

        针对01码元对应波形的正交条件,假设FSK码元波形为:

e_{n}(t)=\left\{\begin{matrix} A\cos(2\pi f_1 t+\varphi_1),a_n=1\\ A\cos(2\pi f_0 t+\varphi_0),a_n=0 \end{matrix}\right. \; \: \: \: \: \: \: \: \: \: \: \: \: (1)

       考虑FSK调制码波形的正交性,有:

\int_{0}^{T_B}\cos(2\pi f_1 t+\varphi_1 )\cos(2\pi f_0 t+\varphi_0)dt=0 \; \: \: \: \: \: \: \: \: \: \: \: \: (2)

       分别根据积化和差公式、定积分公式以及2\pi f_1+2\pi f_0\gg 1的假设条件,可以得到:

\cos(\varphi_1-\varphi_0)\sin((\omega_1-\omega_0)T_B) +\sin(\varphi_1-\varphi_0)[\cos((\omega_1-\omega_0)T_B) -1]=0         (3)

为了使上式在任意\varphi_1, \varphi_0的下都成立,则需要满足:

f_1-f_0=\frac{m}{T_B} \; \: \: \: \: \: \: \: \: \: \: \: \:(4)

        此时只能采用非相干检波法接收。针对相干接收,初始相位确定,当\sin(\varphi_1-\varphi_0)=0,则仅需要满足:

f_1-f_0=\frac{m}{2T_B} \; \: \: \: \: \: \: \: \: \: \: \: \:(5)

1.2、相位连续

       在最小频差为\frac{1}{2T_B}下,可令MSK信号模型为:

e_{n}(t)=\cos(2\pi f_c t+\frac{a_n\pi}{2T_B}t+\varphi_n),nT_B\leq t\leq (n+1)T_B \; \: \: \: \: \: \: \: \: \: \: \: \:(6)

        为了保证码元波形的正交性,此时载频f_c需要满足:

f_c=\frac{n}{4T_B} \; \: \: \: \: \: \: \: \: \: \: \: \:(7)

       考虑相位2\pi f_c t是连续,MSK信号中\frac{a_n\pi}{2T_B}t相位是存在跳变,需要通过调整\varphi_n使得MSK信号相位连续,即需要满足:

\frac{a_{n-1}\pi}{2T_B}nT_B+\varphi_{n-1}=\frac{a_n\pi}{2T_B}nT_B+\varphi_n \; \: \: \: \: \: \: \: \: \: \: \: \:(8)

       由此可得:

\varphi_n=\varphi_{n-1}+\frac{n\pi}{2}\left ( a_{n-1}-a_n \right )=\left\{\begin{matrix} \varphi_{n-1},a_{n-1}=a_n\\ \varphi_{n-1}\pm n\pi,a_{n-1}\neq a_n \end{matrix}\right. \; \: \: \: \: \: \: \: \: \: \: \: \:(9)

       为了满足\sin(\varphi_1-\varphi_0)=0,则mod(a_{n-1}-a_n,2)=0,因此需要将原始01码通过双极性转换,得到+1,-1码。将MSK信号进行IQ正交分解得

e_{n}(t)=p_n \cos\frac{\pi}{2T_B}t\cos\omega_c t-q_n \sin\frac{a_n\pi}{2T_B}t\sin\omega_c t,nT_B\leq t\leq (n+1)T_B    (10)

其中

\begin{matrix} p_n=\cos\left ( \varphi_n \right )=\pm 1\\ q_n=a_n\cos\left ( \varphi_n \right )=a_np_n=\pm 1 \end{matrix}\: \: \: \: \: \: \: \: \: \: \: (11)

二、MSK调制与解调

2.1、调制原理

        MSK信号可以按照公式(10)生成,我们可以根据公式(9)计算\varphi_n,再由公式(11)计算得到p_n,q_n,但是这种信号生成方式在实际电路实现时并不方便,为此引入上图表所示的p_n,q_n的生成方案,首先基于差分编码生成码序列:

b_n=b_{n-1}\bigodot a_n\: \: \: \: \: \: \: \: \: \: \: (12)

其中\odot表示同或,b_1= a_1

       上图表示MSK信号生成的流程图,首先01比特流经过双极性转换变成双极性码\pm 1,在经过差分编码以及串并转换得到p_n,q_n,再分别经过半个波特的频率调制以及载频调制混合得到最终发射的MSK信号。

2.2、解调原理

      对公式(10)所示MSK信号进行载波提取得到:

\begin{matrix} I(t)=p_n \cos\frac{\pi}{2T_B}t\\ Q(t)=q_n \sin\frac{\pi}{2T_B}t \end{matrix}\: \: \: \: \: \: \: \: \: \: \: (13)

      则在I路采样判决点上对应的I值为:

\begin{matrix} I(2nT_B+2T_B)=-p_{2n+1} \cos n\pi\\ I(2nT_B+2T_B)=-p_{2n+2} \cos n\pi\end{matrix}\: \: \: \: \: \: \: \: \: \: \: (14)

      则在Q路采样判决点上对应的Q值为:

\begin{matrix} Q(2nT_B+T_B)=q_{2n} \cos n\pi=a_{2n}p_{2n} \cos n\pi\\ Q(2nT_B+T_B)=q_{2n+1} \cos n\pi=a_{2n+1} p_{2n+1}\cos n\pi\end{matrix}\: \: \: \: \: \: \: \: \: \: \: (15)

       由公式(14)(15)可得:

\begin{matrix} Q(2nT_B+3T_B)=a_{2n+2}I(2nT_B+2T_B)\\ Q(2nT_B+T_B)=-a_{2n+1} I(2nT_B+2T_B)\end{matrix}\: \: \: \: \: \: \: \: \: \: \: (16)

       我们可以对上述采样值大于0的判为+1,小于0判为-1,然后基于公式(16)还原出a_n,为了提高信噪比,我们可以在采样点附近左右对称的区域T_B内求积分得到信噪比更好的判决统计量。最终解调原理图下:

       此外由公式(13)构成的复信号I(t)+j Q(t)可以得到相位历程:

\theta_{n}(t)=\frac{a_n\pi}{2T_B}t+\varphi_n \; \: \: \: \: \: \: \: \: \: \: \: \:(17)

     由此相位历程也可以解调出a_n

三、MSK信号频谱

对公式(10)进行积化和差得:

e_{n}(t)=c_{n}\cos(\omega_c-\frac{\pi}{2T_B}) t+d_{n}{2}\cos(\omega_c+\frac{\pi}{2T_B}) t\; \: \: \: \: \: \: \: \: \: \: \: \:(18)

其中c_{n}=\frac{p_n-q_n}{2},d_{n}=\frac{p_n+q_n}{2},根据p_{n},q_{n}错位延时的特点,c_n,d_n\in \left ( -1,0,1 \right )的变化周期为T_B。考虑随机生成的码序列,MSK信号功率谱密度为:

P(f)=\frac{8P_cT_B\left ( 1+\cos\left (4\pi (f-f_c) T_B \right ) \right )}{\pi^2\left ( 1-16T_B^2 (f-f_c)^2 \right )^2}\; \: \: \: \: \: \: \: \: \: \: \: \:(19)

其中P_c表示被调制波形功率,从公式(18)可以看出MSK信号功率谱密度随偏移载频量的四次方成反比衰减,带外能量泄露很少。

四、仿真

       参数设置,符号速率60kHz,采样率12 Mz,载频 1.5MHz,码序列随机生成。

IQ两路码信号生成                 MSK调制的基带IQ信号

       左上图分别为双极化后的码,差分编码输出结果,MSK调制得到IQ两路码表示p_n,q_n。右图是调制半个波特频率后的基带信号,可以看出p_n只在n为奇数的时候发生变化,q_n只在n为偶数时发生变化。

MSK基带信号的相位历程                                  MSK信号

       左上图为MSK基带信号的相位历程,可以看出信号只有两种频率成分,且相位连续,右图是对应的MSK已调信号,信号基本横包络。

  加噪的MSK信号                          载波提取后的信号

        上图为只考虑接收机热噪声影响下的接收信号以及载波提取后的信号,可以看出,噪声对信号产生了干扰,下图为对应的IQ两路信号的眼图,可以看出IQ两路信号存在码长大小的延时。

积分前I路眼图                                积分前Q路眼图

        对接收的IQ信号进行积分得到下图所示的眼图,可以看出眼图的展宽降低,对应的信噪比得到显著提升。

积分后I路眼图                                积分后Q路眼图

       最后分析了不同信号长度(1、2、4、10、100、1000符号长度)下的信号功率频谱与理论值的差异,可以看出随着信号长度增加,信号功率谱形状趋于公式(18)所示的功率谱形状。

1                                                  2                                             4

10                                                   100                                        1000

参考文献

1、樊昌信 曹丽娜《通信原理》第7版

2、S. Gronemeyer and A. McBride, "MSK and Offset QPSK Modulation," in IEEE Transactions on Communications, vol. 24, no. 8, pp. 809-820, August 1976, doi: 10.1109/TCOM.1976.1093392.


总结

       本文根据自己的理解从理论和仿真的角度介绍了MSK调制与解调原理,其中关于IQ路的延时处理可能和其他资料有所不同。有更好的内容欢迎在评论区放置链接,另外有问题也欢迎评论区留言。转载请附链接【杨(_> <_)】的博客_CSDN博客-信号处理,SAR,代码实现领域博主 


二周年纪念

        目前《SAR学习笔记》观看量最多,有1.4w,阅读量过万的文章有两篇,另一篇《SAR学习笔记-SAR成像算法系列(一)》,阅读量过5千的文章有8篇,涉及:SAR,呼吸信号处理,Gold序列。整个创作,获得285次点赞,内容获得250次评论,获得1,843次收藏,代码片获得732次分享,资源总下载次数300多次。总阅读量14w。对于这样一个结果,博主还是很满意的。当然博主也欢迎各位看官有好的资源可以在评论区放置链接。根据目前情况,后期博主将对SAR领域中的干涉SAR、极化SAR、逆SAR内容进行补充。近期主要更新与信号类型有关的文章。当然,如果有什么信号处理的理论技术需要博主补充的可以评论区留言。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/231194.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字员工:降本提效,强势助力数智化转型,引领新风潮

随着科技迅猛发展&#xff0c;数字化转型已经渗透到各行各业&#xff0c;在数字化进程中&#xff0c;数字员工以其高效、智能的特性引领着未来工作的新风潮。 1.高度自动化与提升效率—— 数字员工以其高度自动化的特性成为企业工作流程中的得力助手&#xff0c;能够在短时间…

oracle闪回恢复表数据

oracle闪回恢复表数据 1.打开监听和数据库&#xff0c;进入需要操作的表的所属用户下 [oraclemydb ~]$ lsnrctl start [oraclemydb ~]$ sqlplus / as sysdba SQL> startup SQL> conn test/123456 SQL> select * from test1&#xff1b;2.删除任意数据&#xff1a; …

Mybatis代码生成器

【Java代码生成神器】自动化生成Java实体类、代码、增删改查功能&#xff01;点击访问 推荐一个自己每天都在用的Java代码生成器&#xff01;这个网站支持在线生成Java代码&#xff0c;包含完整的Controller\Service\Entity\Dao代码&#xff0c;完整的增删改查功能&#xff01…

超详细的pytest玩转HTML报告:修改、汉化和优化

前言 Pytest框架可以使用两种测试报告&#xff0c;其中一种就是使用pytest-html插件生成的测试报告&#xff0c;但是报告中有一些信息没有什么用途或者显示的不太好看&#xff0c;还有一些我们想要在报告中展示的信息却没有&#xff0c;最近又有人问我pytest-html生成的报告&a…

可逆图像去噪——InvDN模型推理测试

性能&#xff1a;InvDN的去噪性能优于多数现有的竞争模型&#xff0c;在SIDD数据集上实现了新的先进的结果&#xff0c;同时享受更少的运行时间。这表明该方法在处理真实噪声问题上具有很高的效率和准确性。 模型大小&#xff1a;此外&#xff0c;InvDN的大小远小于DANet&…

除了Whimsical,这4款在线协作软件也值得推荐!干货建议收藏。

Whimsical介绍 Whimsical是一款流行的在线协作工具&#xff0c;旨在帮助团队成员更好地进行头脑风暴、设计和规划工作。它提供了多种工具&#xff0c;包括流程图、线框图、思维导图和便签板&#xff0c;以满足团队在不同阶段的需求。Whimsical的界面简洁直观&#xff0c;易于使…

MySQL--主从复制

主从复制 主从复制是指将主数据库的DDL和DML操作通过二进制日志传到从库服务器中&#xff0c;然后在从库上对这些日志重新执行&#xff08;也叫重做&#xff09;&#xff0c;从而使得从库和主库的数据保持同步。 MySQL支持一台主库同时向多台从库进行复制&#xff0c;从库同时…

OpenCV | 图像梯度sobel算子、scharr算子、lapkacian算子

import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline 1、sobel算子 img cv2.imread(pie.png,cv2.IMREAD_GRAYSCALE) cv2.imshow(img,img) cv2.waitKey() cv2.destroyAllWindows() pie图片 dst cv2.S…

【VScode】代码文件注释,User snippets 配置 Python/C++ , 其他语言类似

在代码文件头部&#xff0c;输入 header &#xff0c;回车&#xff0c;自动生成文件注释 Python {"HEADER": {"prefix": "header","body": ["# -*- encoding: utf-8 -*-", "\"\"\"","Date …

HCIP---MPLS---VPN

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 MPLS协议使用标签交换来转发报文&#xff0c;最初是为了提高IP报文转发效率而设计的&#xff0c;但是后来随着硬件性能的提升&#xff0c;路由表已经不再是路由表/防火墙的转发瓶颈&#…

qt-C++笔记之主线程中使用异步逻辑来处理ROS事件循环和Qt事件循环解决相互阻塞的问题

qt-C笔记之主线程中使用异步逻辑来处理ROS事件循环和异步循环解决相互阻塞的问题 code review! 文章目录 qt-C笔记之主线程中使用异步逻辑来处理ROS事件循环和异步循环解决相互阻塞的问题1.Qt的app.exec()详解2.ros::spin()详解3.ros::AsyncSpinner详解4.主线程中结合使用的示…

荒野大镖客提示找不到emp.dll文件的5个修复方法-快速修复dll教程

今天我要和大家分享的是关于荒野大镖客缺失emp.dll的5个修复方法。我们都知道&#xff0c;荒野大镖客是一款非常受欢迎的游戏&#xff0c;但是有些玩家在玩游戏的过程中会遇到一些问题&#xff0c;比如emp.dll文件丢失。那么&#xff0c;emp.dll文件到底有什么作用呢&#xff1…