智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.哈里斯鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用哈里斯鹰算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.哈里斯鹰算法

哈里斯鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/108528147
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

哈里斯鹰算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明哈里斯鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/231244.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在PyCharm中配置PyQt5环境

在PyCharm中配置PyQt5环境 文章目录 1.安装第三方库2.PyQt5设计器3.PyUIC转换工具 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ&#x1…

网站域名那些事儿

互联网用户对于在线数据安全的意识逐渐增强,因此拥有一个可靠的网络安全系统是至关重要的。而其中一个最重要的元素就是网站域名SSL证书。 SSL(Secure Socket Layer)是一种用于确保网站与访客之间通信安全的技术。通过使用SSL证书&#xff0c…

Linux 基本语句_13_消息队列

概念: 不同进程能通过消息队列来进行通信,不同进程也能获取或发送特定类型的消息,即选择性的收发消息。 一般一个程序采取子进程发消息,父进程收消息的模式 常用函数功能: fork(); // 创建子进程 struct msgbuf{ …

【算法心得】When data range not large, try Bucket sort

https://leetcode.com/problems/maximum-number-of-coins-you-can-get/description/?envTypedaily-question&envId2023-11-24 I solve this problem by sorting piles first, and choose piles for(let i1;i<(piles.length/3)*2;i2) but: o(≧口≦)o Problem must …

开放式耳机怎么选?自费千元测评,百元、千元价位选哪个

开放式耳机以其不入耳式设计&#xff0c;更容易带给用户舒适的佩戴体验&#xff0c;也不影响使用中聆听周围声响&#xff0c;还可以保证长时间的舒适佩戴&#xff0c;适配漫长的通勤、游玩旅程。当然&#xff0c;开放式耳机种类也有许多&#xff0c;究竟哪一款更适合大家呢&…

智慧博物馆视频监控系统设计,可视化AI智能分析技术助力博物馆多维度监管

一、背景与需求 博物馆视频智能监控系统是智慧博物馆建设的重要组成部分&#xff0c;传统的博物馆视频监控系统以模拟系统架构为主&#xff0c;存在监管效率低、各个系统独立运作形成数据孤岛、以“事后补救”为主要监管手段等管理弊病&#xff0c;无法满足互联网高速发展背景…

kafka C++实现生产者

文章目录 1 Kafka 生产者的逻辑2 Kafka 的C API2.1 RdKafka::Conf2.2 RdKafka::Message2.3 RdKafka::DeliveryReportCb2.4 RdKafka::Event2.5 RdKafka::EventCb2.6 RdKafka::PartitionerCb2.7 RdKafka::Topic2.8 RdKafka::Producer&#xff08;核心&#xff09; 3 Kafka 生产者…

科研绘图配色

01 配色的基本原则 颜色需要有自身的意义。不同的颜色表示不同的分组&#xff0c;相近的颜色表示同一个分组&#xff1b;配色需要展现数据逻辑关系&#xff0c;突出关键数据&#xff0c;比如重要的数据用深色或暖色表示&#xff0c;不重要的数据用浅色或冷色表示。 色彩种类两…

iview弹窗提交问题优化

如上图所示 有时候在弹窗中 有比较复杂的表格组件数据 这时候 你如果把提交按钮直接放在弹窗上 就会很麻烦 不仅要处理表格的验证 同时也要维护弹窗的开启和关闭状态 不是很自由 这时候 就看见把提交按钮单独摘出来 可以在自建的按钮上 判断各种状态 是不是很方便呢

easyrecovery 16数据恢复软件2024最新免费下载地址

EasyRecovery 16是一款操作简单、功能强大数据恢复软件,通过easyrecovery可以从硬盘、光盘、U盘、数码相机、手机等各种设备中恢复被删除或丢失的文件、图片、音频、视频等数据文件。 EasyRecovery Pro 16安装步骤 一、首先需要在该页找到下载地址处选任意地址将EasyRecovery软…

打造独特封面:封面设计的关键要素与技巧解析!

书籍作品的封面设计非常精致。就像商品的包装一样&#xff0c;有助于提高书籍的销量。书封的设计表现主要从图像、文字、材质等方面进行设计。基本上所有的书都需要有文字&#xff0c;所以特别考验设计师的文字排版能力。今天就和大家分享一些书籍封面设计的小知识&#xff0c;…

LLM三阶段训练代码汇总

在进行大模型的阶段训练时,从头编写代码有点浪费时间。为了更高效地实现这一目标,我们可以利用GitHub上已有的现成代码。下面对现成的代码库进行总结。 欢迎关注公众号 1. LLaMA-Factory LLaMA Factory: 轻松的大模型训练与评估 https://github.com/hiyouga/LLaMA-Factory …