Python数据分析从入门到进阶:模型评估和选择(含代码)

引言

之前我们介绍了机器学习的一些基础性工作,介绍了如何对数据进行预处理,接下来我们可以根据这些数据以及我们的研究目标建立模型。那么如何选择合适的模型呢?首先需要对这些模型的效果进行评估。本文介绍如何使用sklearn代码进行模型评估

模型评估 对模型评估的基本步骤如下:

  • 首先将要将数据集分为训练集和测试集
  • 对训练集进行模型拟合
  • 确定合适的评估指标
  • 计算在测试集上的评估指标

💮1 数据集划分

在机器学习问题中,从理论上我们需要对数据集划分为训练集、验证集、测试集。

  • 训练集:拟合模型(平常的作业和测试)
  • 验证集:计算验证集误差,选择模型(模拟考)
  • 测试集:评估模型(最终考试) 但是在实际应用中,一般分为训练集和测试集两个。其中训练集:70%,测试集:30%.这个比例在深度学习中可以进行相应的调整。 我们可以使用sklearn中的train_test_split划分数据集
# 导入相关库
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn import metrics
from sklearn.model_selection import KFold, cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import pandas as pd
# 导入数据
df = pd.read_csv(r'C:\Users\DELL\data-science-learning\seaborn-data\iris.csv')
df.shape
(150, 5)
# 划分数据集和测试集
train_set, test_set = train_test_split(df, test_size=0.3,
random_state=12345)
train_set.shape, test_set.shape
((105, 5), (45, 5))

可以看出此时训练集只有105个数据,测试集有45个数据。

🏵️2.交叉验证模型

评估模型时,我们最常用的方法之一就是交叉验证,具体原理看看我这篇文章统计学习导论(ISLR)(五):重采样方法(交叉验证和bootstrap),下面以一个具体案例来看如何实现,代码如下

# 加载数据
digits = datasets.load_digits()
# 创建特征矩阵
features = digits.data
target = digits.target
# 进行标准化
stand = StandardScaler()
# 创建logistic回归器
logistic = LogisticRegression()
# 创建一个包含数据标准化和逻辑回归的流水线
pipline = make_pipeline(stand, logistic)# 先对数据进行标准化,再用logistic回归拟合
# 创建k折交叉验证对象
kf = KFold(n_splits=10, shuffle=True, random_state=1)

使用shuffle打乱数据,保证我们验证集和训练集是独立同分布的(IID)的

# 进行k折交叉验证
cv_results = cross_val_score(pipline,features,target,cv=kf,scoring='accuracy',#评估的指标n_jobs=-1)#调用所有的cpu
cv_results.mean()
0.9693916821849783

使用pipeline方法可以使得我们这个过程很方便,上述我们是直接对数据集进行了交叉验证,在实际应用中,建议先对数据集进行划分,再对训练集使用交叉验证。

from sklearn.model_selection import train_test_split
# 划分数据集
features_train, features_test, target_train, target_test = train_test_split(features, target,test_size=0.1,random_state=1)
# 使用训练集来计算标准化参数
stand.fit(features_train)
StandardScaler()
# 然后在训练集和测试集上运用
features_train_std = stand.transform(features_train)
features_test_std = stand.transform(features_test)

这里之所以这样处理是因为我们的测试集是未知数据,如果使用测试集和训练集一起训练预处理器的话,测试集的信息有一部分就会泄露,因此是不科学的。在这里我认为更general的做法是先将训练集训练模型,用验证集评估选择模型,最后再用训练集和验证集一起来训练选择好的模型,再来在测试集上进行测试。

pipeline = make_pipeline(stand, logistic)
cv_results = cross_val_score(pipline,features_train_std,target_train,cv=kf,scoring='accuracy',n_jobs=-1)
cv_results.mean()
0.9635112338010889

🌹3.回归模型评估指标

评估回归模型的主要指标有以下几个

  • MAE:平均绝对误差: MAE=1m∑i=1N∣yi−yi∣MAE=\frac{1}{m}\sum_{i=1}{N}|y_i-\hat{y}_i|MAE=m1​∑i=1N​∣yi​−y^​i​∣
  • MSE:均方误差: MSE=1m∑i=1N(yi−yi)2MSE=\frac{1}{m}\sum_{i=1}{N}(y_i-\hat{y}_i)2MSE=m1​∑i=1N​(yi​−y​i​)2
  • RMSE: RMSE=1m∑i=1N(yi−yi)2RMSE=\sqrt{\frac{1}{m}\sum_{i=1}{N}(y_i-\hat{y}_i)2}RMSE=m1​∑i=1N​(yi​−y​i​)2​
  • r2: R2=ESSTSSR^2 = \frac{ESS}{TSS}R2=TSSESS​ 下面我们来看看具体代码
# 导入相关库
from sklearn.datasets import make_regression
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
from sklearn import metrics
# 建立模拟数据集
features, target = make_regression(n_samples=100,n_features=3,n_informative=3,n_targets=1,noise=50,coef=False,random_state=1)
# 创建LinerRegression回归器
ols = LinearRegression()
metrics.SCORERS.keys()
dict_keys(['explained_variance', 'r2', 'max_error', 'neg_median_absolute_error', 'neg_mean_absolute_error', 'neg_mean_absolute_percentage_error', 'neg_mean_squared_error', 'neg_mean_squared_log_error', 'neg_root_mean_squared_error', 'neg_mean_poisson_deviance', 'neg_mean_gamma_deviance', 'accuracy', 'top_k_accuracy', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_ovr_weighted', 'roc_auc_ovo_weighted', 'balanced_accuracy', 'average_precision', 'neg_log_loss', 'neg_brier_score', 'adjusted_rand_score', 'rand_score', 'homogeneity_score', 'completeness_score', 'v_measure_score', 'mutual_info_score', 'adjusted_mutual_info_score', 'normalized_mutual_info_score', 'fowlkes_mallows_score', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'jaccard', 'jaccard_macro', 'jaccard_micro', 'jaccard_samples', 'jaccard_weighted'])
# 使用MSE对线性回归做交叉验证
cross_val_score(ols, features, target, scoring='neg_mean_squared_error', cv=5)
array([-1974.65337976, -2004.54137625, -3935.19355723, -1060.04361386,-1598.74104702])
cross_val_score(ols, features, target, scoring='r2')
array([0.8622399 , 0.85838075, 0.74723548, 0.91354743, 0.84469331])

🌺4.创建一个基准回归模型

from sklearn.datasets import load_boston
from sklearn.dummy import DummyRegressor
from sklearn.model_selection import train_test_split
# 加载数据
boston = load_boston()
features, target = boston.data, boston.target
# 将数据分为测试集和训练集
features_train, features_test, target_train, target_test = train_test_split(features, target,random_state=0)
# 创建dummyregression对象
dummy = DummyRegressor(strategy='mean')
# 训练模型
dummy.fit(features_train, target_train)
DummyRegressor()
dummy.score(features_test, target_test)
-0.001119359203955339
# 下面我们训练自己的模型进行对比
from sklearn.linear_model import LinearRegression
ols = LinearRegression()
ols.fit(features_train, target_train)
LinearRegression()
ols.score(features_test, target_test)
0.6354638433202129

通过与基准模型的对比,我们可以发现我们线性回归模型的优势

🌻5.混淆矩阵

评估分类器性能一个重要方法是查看混淆矩阵。一般的想法是计算A类实例被分类为B类的次数,以及B类被预测为A类的个数。要计算混淆矩阵,首先需要有一组预测,以便与实际目标进行比较。混淆矩阵如下图所示:

76e42b479e3efb78fb9ab868f7432b99

其中:

  • TP:正确预测正类的个数
  • FP:错误预测正类的个数
  • TN:正确预测负类的个数
  • FN:错误预测负类的个数

下面我们来看如何使用具体的代码得到混淆矩阵

# 导入相关库
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import pandas as pd
# 加载数据
iris = load_iris()
features = iris.data
target = iris.target
class_names = iris.target_names
features_train, features_test, target_train, target_test = train_test_split(
features, target, random_state = 1)
classfier = LogisticRegression()
target_predicted = classfier.fit(features_train, target_train).predict(features_test)
# 创建一个混淆矩阵
matrix = confusion_matrix(target_test, target_predicted)
df = pd.DataFrame(matrix, index = class_names, columns=class_names)
sns.heatmap(df, annot=True, cbar=None, cmap='Blues')
plt.ylabel('True Class')
plt.xlabel('Predict Class')
plt.title('Confusion matrix')
Text(0.5, 1.0, 'Confusion matrix')


png

🌼6.分类评估指标

对于分类问题的评估指标主要包含以下几个:

  • F1-score:21prection+1recall\frac{2}{\frac{1}{prection}+\frac{1}{recall}}prection1​+recall1​2​
  • 准确率: TP+TNFP+TP+FN+TN\frac{TP + TN}{FP + TP + FN + TN}FP+TP+FN+TNTP+TN​
  • 召回率:TPTP+FN\frac{TP}{TP+FN}TP+FNTP​
  • 精确率:TPTP+FP\frac{TP}{TP+FP}TP+FPTP​

其中,对于非均衡数据,使用F1-score比较合理。下面我们来看具体如何得到这些评估指标

from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
# 创建模拟数据集
X, y = make_classification(random_state=1,n_samples=1000,n_features=3,n_informative=3,n_redundant=0,n_classes=2)
# 创建逻辑回归器
logit = LogisticRegression()
# 使用准确率对模型进行交叉验证
cross_val_score(logit, X, y, scoring='accuracy')
array([0.87, 0.88, 0.85, 0.93, 0.9 ])
cross_val_score(logit, X, y, scoring='f1')
array([0.87735849, 0.88235294, 0.85849057, 0.92708333, 0.90384615])
cross_val_score(logit,X,y,scoring='precision')
array([0.83035714, 0.86538462, 0.8125    , 0.9673913 , 0.86238532])

其中,我们可以看出,召回率精确率两个往往不会同时增加(增加样本量可能可以让两个指标同时增加),这里有点像我们假设检验中的第一类错误和第二类错误。因此,我们要保证这两个指标都不能太小。下面我们介绍ROC和AUC

🌷7.ROC和AUC

🌱7.1 ROC曲线

RUC曲线是用于二分类器的另一个常用工具。它与精密度/召回率非常相似,但不是绘制精密度与召回率的关系,而是绘制真阳性率(召回率的另一个名称)与假阳性率(FPR)的关系。FPR是未正确归类为正的负实例的比率。通过ROC曲线来进行评估,计算出每个阈值下的真阳性率和假阳性率

  • TPR=TP/(TP+FN)TPR = TP/(TP + FN)TPR=TP/(TP+FN)
  • FPR=FP/(FP+TN)FPR = FP/(FP + TN)FPR=FP/(FP+TN)
# 导入相关库
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.model_selection import train_test_split
features, target = make_classification(n_samples=1000,n_features=10,n_classes=2,n_informative=3,random_state=3)
features_train, features_test, target_train, target_test = train_test_split(features,target,test_size=.1,random_state=1)
logit.fit(features_train, target_train)
LogisticRegression()
# 预测为1的概率
target_probabilities = logit.predict_proba(features_test)[:,1]
target_test
array([0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1,1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0,1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1])

这里我们选取所有第二列的概率的值,也就是所有为正类的值

false_positive_rate, true_positive_rate, thresholds = roc_curve(target_test,target_probabilities)

我们默认是将概率大于50%的判断为正类,但当我们实际应用时,可以对阈值进行相应的调整,例如我们可以增加阈值,保证正类的准确度更高,如下所示

y_predict = target_probabilities>0.6
y_predict
array([False, False,  True, False,  True,  True, False,  True, False,False, False,  True, False, False, False,  True, False, False,False, False,  True,  True,  True, False,  True,  True,  True,False,  True, False,  True, False,  True,  True, False, False,True,  True,  True,  True,  True, False, False,  True, False,True,  True, False, False, False, False,  True, False, False,True,  True,  True, False,  True, False,  True, False, False,True,  True, False,  True,  True,  True,  True,  True,  True,False,  True, False, False,  True, False, False, False, False,True,  True, False,  True, False,  True, False,  True, False,False,  True, False, False,  True, False,  True, False, False,True])
# 绘制AUC曲线
plt.plot(false_positive_rate, true_positive_rate)
plt.plot([0, 1], ls='--')
plt.plot([0, 0], [1, 0], c='.7')
plt.plot([1,1], c='.7')


png

# 我们可以通过predict_proba 查看样本的预测概率
logit.predict_proba(features_test)[2]
array([0.02210395, 0.97789605])
logit.classes_
array([0, 1])

🌲7.2 AUC值

比较分类器的一种方法是测量曲线下面积(AUC)。完美分类器的AUC等于1,而适当的随机分类器的AUC等于0.5。Sklearn提供了一个计算AUC的函数roc_auc_score

计算AUC

 roc_auc_score(target_test,target_probabilities)
0.9747899159663865

可以看出该分类器的AUC值为0.97,说明该模型的效果很好。

由于ROC曲线与精度/召回(PR)曲线非常相似,您可能想知道如何决定使用哪一条曲线。根据经验,当阳性类别很少,或者当你更关心假阳性而不是假阴性时,你应该更喜欢PR曲线。否则,使用ROC曲线。

🌳8.创建一个基准分类模型

from sklearn.datasets import load_iris
from sklearn.dummy import DummyClassifier
from sklearn.model_selection import train_test_split
iris = load_iris()
features, target = iris.data, iris.target
# 划分数据集
features_train, features_test, target_train, target_test = train_test_split(features, target,random_state=0)
dummy = DummyClassifier(strategy='uniform', random_state=1)
dummy.fit(features_train, target_train)
DummyClassifier(random_state=1, strategy='uniform')
dummy.score(features_test, target_test)
0.42105263157894735
# 接下来我们创建自己的模型
from sklearn.ensemble import RandomForestClassifier#随机森林分类,考虑在后面分享
classfier = RandomForestClassifier()
classfier.fit(features_train, target_train)
RandomForestClassifier()
classfier.score(features_test, target_test)
0.9736842105263158

可以看出,随机森林模型效果更好

🌴9.可视化训练集规模的影响

我们都知道,只要给我们足够多的数据集,那我们基本能训练一个效果很好的模型,接下来我们来看看如何绘制训练集大小对模型效果的影响(learning curve)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
digits = load_digits()
features, target = digits.data, digits.target
# 使用交叉验证为不同规模的训练集计算训练和测试得分
train_sizes, train_scores, test_scores = learning_curve(RandomForestClassifier(),features,target,cv=10,scoring='accuracy',n_jobs=-1,train_sizes=np.linspace(0.01,1,50))
# 计算训练集得分的平均值和标准差
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
plt.plot(train_sizes, train_mean, '--', color='black', label='Training score')
plt.plot(train_sizes, test_mean, color='black', label='Cross-validation score')
plt.fill_between(train_sizes, train_mean-train_std,train_mean + train_std, color='#DDDDDD')
plt.fill_between(train_sizes, test_mean-test_std,test_mean + test_std, color='#DDDDDD')
plt.title('learning_curve')
plt.xlabel('Training Set Size')
plt.ylabel('Accuracy Score')
plt.legend(loc='best')
plt.tight_layout()
plt.show()


png

🌵10. 生成评估指标报告

from sklearn.metrics import classification_report
iris = datasets.load_iris()
features = iris.data
target = iris.target
class_names = iris.target_names
features_train, features_test, target_train, target_test = train_test_split(
features, target, random_state = 1)
classfier = LogisticRegression()
model = classfier.fit(features_train, target_train)
target_predicted = model.predict(features_test)
# 生成分类器的性能报告
print(classification_report(target_test,target_predicted,target_names=class_names))
              precision    recall  f1-score   supportsetosa       1.00      1.00      1.00        13versicolor       1.00      0.94      0.97        16virginica       0.90      1.00      0.95         9accuracy                           0.97        38macro avg       0.97      0.98      0.97        38
weighted avg       0.98      0.97      0.97        38

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
Python全套学习资料

在这里插入图片描述

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

5️⃣Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/233435.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

九要素微气象仪-气象百科

随着科技的发展,人们对天气的预测和掌控能力越来越强。在这个领域,九要素微气象仪以其精准、快速、便携的特点,成为了气象预测的佼佼者。这款仪器不仅可以预测风向、风速、温度、湿度、气压等九大要素,还可以实时监测环境温湿度、…

四个方法,设置excel文件只读模式

由于excel文件经常用于数据文件,数据就需要特别保护,大家可能需要将文件设置为只读模式来保护数据不被修改,Excel文件想要设置为只读的方法有很多,今天分享四种方法给大家: 方法一:文件属性 右键点击文件…

springboot自定义校验注解的实现

自定义校验注解的实现 通过谷粒商城项目学习了自定义校验器的实现一、编写自定义校验注解二、自定义注解的校验器三、关联自定义的校验器和自定义的校验注解总结 通过谷粒商城项目学习了自定义校验器的实现 近日在学习雷神的谷粒商城项目,其中有一个自定义校验的实…

html/css中位置position的绝对位置absolute顺时针盒子案例图片排序

目标图片&#xff1a; Dreamweaver界面&#xff1a; 代码部分&#xff1a; <!doctype html> <html> <head> <meta charset"utf-8"> <title>无标题文档</title> <style type"text/css">.red{background-color:r…

PyQt基础_014_对话框类控件QFileDialog

基本操作 import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import *class filedialogdemo(QWidget):def __init__(self, parentNone):super(filedialogdemo, self).__init__(parent)layout QVBoxLayout()self.btn QPushButton("…

Vue3-数据交互请求工具设计

1.安装axios pnpm add axios 2.利用axios.create创建一个自定义的axios来使用 参考官网&#xff1a;axios中文文档|axios中文网 | axios 在src/utils文件夹下新建request.js&#xff0c;封装axios模块 import axios from axios const baseURL const instance axios.creat…

javaagent字节码增强浅尝

概述 javaagent 技术广泛应用于对代码的增强&#xff0c;比如统计方法执行时间、GC 信息打印、分布式链路跟踪等&#xff1b;实现方式包括 javassist 和 bytebuddy&#xff0c;bytebuddy 是对 javassist 的改进&#xff1b;类似于 spring 中的 AOP&#xff1b; Instrumentati…

手把手教你写IP地址规划方案

中午好&#xff0c;我的网工朋友。 IP地址的合理规划是网络设计的重要环节&#xff0c;大型计算机网络必须对IP地址进行统一规划并得到有效实施。 IP地址规划的好坏&#xff0c;不仅会影响到网络路由协议算法的效率&#xff0c;还会影响到网络的性能&#xff0c;网络的扩展&a…

vue3+ts 实现时间间隔选择器

需求背景解决效果视频效果balancedTimeElement.vue 需求背景 实现一个分片的时间间隔选择器&#xff0c;需要把显示时间段显示成图表&#xff0c;涉及一下集中数据转换 [“02:30-05:30”,“07:30-10:30”,“14:30-17:30”]‘[(2,5),(7,10),(14,17)]’[4, 5, 6, 7, 8, 9, 10, …

金鸣图片转excel、word网页版操作说明

一、点击“点击添加需转换的图片或PDF”&#xff0c;如还没登录将弹出登录窗口&#xff0c;直接登录即可&#xff0c;如已登录&#xff0c;则直接添加待识别的图片或DPF即可。 二、将待识别的图片或PDF添加进列表后点击“提交识别”按钮。 三、识别成功后将弹出窗口&#xff0c…

从零开始构造一个Operator(保姆级教程)

文章目录 operator是什么operator如何开发CRD需求分析Operator1. 初始化项目2. 初始化CRD相关文件3. code-generator生成代码4. controller业务逻辑实现5. manager启动6. 本地安装调试7. 部署在集群上8. 卸载清除资源 项目地址&#xff1a;https://github.com/kosmos-io/simple…

清早送朋友的阳光早安问候语祝福,愿你好运同行

1、早上好&#xff01;送上清晨第一缕阳光&#xff0c;伴随着燕舞蝶飞的风声&#xff0c;给您最温馨的问候。让心情放飞&#xff0c;让梦想翱翔&#xff0c;让生命绽放。祝您每天都充满能量&#xff0c;前程似锦&#xff01; ​ 2、平凡就是幸福&#xff0c;简单就是快乐&…