经典神经网络——ResNet模型论文详解及代码复现

论文地址:Deep Residual Learning for Image Recognition (thecvf.com) 

PyTorch官方代码实现:vision/torchvision/models/resnet.py at main · pytorch/vision (github.com)

B站讲解: 【精读AI论文】ResNet深度残差网络_哔哩哔哩_bilibili

一、背景

ResNet是何凯明等人在2015年提出的模型,获得了CVPR最佳论文奖,在ILSVRC和COCO上的比赛成绩:(以下比赛项目都是第一) 

  1. ImageNet Classification
  2. ImageNet Detection
  3. ImageNet Localization
  4. COCO Detection
  5. COCO Segmentation

Resnet,被誉为撑起计算机视觉半边天的文章,重要性不言而喻,另外,文章作者何凯明,在2022年AI 2000人工智能最具影响力学者排行里排名第一: 

深度学习的发展从LeNet到AlexNet,再到VGGNet和GoogLeNet,网络的深度在不断加深,经验表明,网络深度有着至关重要的影响,层数深的网络可以提取出图片的低层、中层和高层特征。 通常来说,在同等条件下,网络越深,性能越好(暂且这样认为)。但当网络足够深时,仅仅在后面继续堆叠更多层会带来很多问题:

第一个问题就是梯度爆炸 / 消失(vanishing / exploding gradients),这可以通过BN和更好的网络初始化解决;

第二个问题就是退化(degradation)问题,即当网络层数多得饱和了,加更多层进去会导致优化困难、且训练误差和预测误差更大了,注意这里误差更大并不是由过拟合导致的(后面实验细节部分会解释)。resnet的出现,解决了这个问题,模型可以轻易堆叠到几十层上百层(一千层的都有)。

那么,接下来就来看看这个网络是如何解决问题的吧。

二、论文解读

1、ResNet网络是什么

ResNet(Residual Network)是一种深度神经网络模型,也被称为残差网络。它通过引入残差块(Residual Building Block)来解决深层神经网络训练过程中的梯度消失问题。

在ResNet中,网络的输出由两部分组成:

恒等映射(identity mapping)和残差映射(residual mapping)。恒等映射指的是将输入直接传递到下一层,而残差映射则是对输入进行一些非线性变换后再进行传递。这种设计使得网络能够更好地学习残差信息,从而让网络变得更加深层。

ResNet的关键创新点:

在于引入了shortcut connections,即跳过一层或多层的连接。这些连接使得信息能够更加顺畅地传递,避免梯度在传播过程中消失。通过这种方式,ResNet可以训练非常深的网络,而不会出现性能下降的问题。

它添加了一个短路连接到第二层激活函数之前。那么激活函数的输入就由原来的输出H(x)=F(x)变为了H(x)=F(x)+x。在RestNet中,这种输出=输入的操作成为恒等映射。那么,上图中的identity其实功能也是恒等映射。

 那么这么做的好处是什么呢?

在深度神经网络中,随着训练过程中反向传播权重参数的更新,网络中某些卷积层已经达到最优解了,其实此时这些层的输入输出都是一样的,已经没有训练的必要。但实际训练过程中,我们是很难将权重参数训练为绝对0误差的,但是这种情况已经是最优解了,其实对这些层的训练过程是可以抛弃的,即此时可以设F(x)=0,那么这时的输出为H(x)=x就是最优输出。

        在传统平原网络中,即未加入identity之前,如果网络训练已经达到最优解了,那么随着网络继续训练、权重参数的更新,有可能将已经达到最优解的权重参数继续更新为误差更多的值。但随着identity的加入,在达到最优解的时候直接通过F(x)=x,那么权重参数可以达到至少不会比之前训练效果差的目的,并且可以加快网络收敛。

2、ResNets为什么能构建如此深的网络?

深度学习对于网络深度遇到的主要问题是梯度消失和梯度爆炸,传统对应的解决方案则是数据的初始化(normlized initializatiton)和(batch normlization)正则化,但是这样虽然解决了梯度的问题,深度加深了,却带来了另外的问题,就是网络性能的退化问题,深度加深了,错误率却上升了,而残差用来设计解决退化问题,其同时也解决了梯度问题,更使得网络的性能也提升了。

 

3、为什么能够解决梯度消失的问题?

首先看核心公式:

        ①式为恒等映射函数h(·)和残差函数F(·)之和,即:对第l层的输入x计算残差,再和x的恒等映射加起来,记作y;

        ②式表示对y进行激活,得到第l层的输出(也就是第l+1层的输入);③式是对①和②的整理,可以用一个式子统一起来书写。

        上面的公式是针对相邻两层的情况,那么对于任意深的单元L和任意浅的单元l有:

        该式表示第L层的输入等于第l层的输出加上第l层到第L-1层的残差和,那么在优化的时候,只需要拟合残差项(后面的∑(·)),使之尽可能为0,就能实现第L层和第l层恒等,从而做到信息不丢失。为什么需要拟合残差呢?我个人的理解是:第L层和第l层之间的每一个部分,都会对当前造成影响,有些地方是不好的残差,那么优化方向可能会被带偏,起到反作用。

        假如损失函数为ε,在反向传播时,对上面的式子求偏导,得到:

  可以看到,左边蓝框框里的项没有权重信息,意味着反向传播的时候,信息能够从第L层直接传递到第l层,而无需经过权重,这就保证了信息的完整性。右边蓝框框里是1+▲是防止梯度消失的关键,因为目前大多用的是批量梯度下降算法,每次是把一个批量(batch)的样本送进去计算,那么不可能所有批量计算偏导的结果都为-1,从而1+▲在大部分情况下不会为0,因此即便某个批量计算的权重很小,都不会发生梯度消失。

4、为什么能够加快收敛速度?

        实际上还是可以从上面的偏导公式来解释,在计算batch的梯度时,大多数情况可以获得一个较大的梯度值(因为有一个1在那里),从而可以大步向前走,更快地找到最优值。

        另外,在整个模型中,浅层网络提取到的是低级特征,深层网络提取到的是复杂特征,如果没有恒等映射连接,那么最后是利用复杂特征进行拟合,从而比较费时,加入恒等映射,相当于保留了一部分低级特征用来判断。

        理论方面讲完了,现在看看网络架构是什么样的:

以50-layer为例,也就是后面将要实现的resnet_50,可以看到总共有6个模块,分别是:conv1、conv2_x、conv3_x、conv4_x、conv5_x、fc。

        conv1主要是对原始输入图像进行第一波卷积,把输入图像从224缩小为112(这里的224和112指图像的长宽,后面同理);conv2/3/4/5_x是4个卷积模块,每个模块包含了多个由3个卷积层组成的小模块,例如,对于conv3_x这个模块来说,包含了4个小模块(右边有一个×4),每个小模块包含了3个卷积层。

三、ResNet使用PyTorch框架实现

kaggle项目地址:ResNet | Kaggle

import torch
from torch import nn
import sys
sys.path.append("../input/d2ld2l")
import d2l
from d2l.torch import load_data_fashion_mnist
from d2l.torch import train_ch6
from d2l.torch import try_gpu
from torch.nn import functional as F
class Residual(nn.Module):def __init__(self,in_channes,out_channes,use_1x1_conv=False,stride = 1):super().__init__()if use_1x1_conv:self.res = nn.Sequential(nn.Conv2d(in_channes,out_channes,kernel_size=1,stride=stride))else:self.res = nn.Sequential()self.model =nn.Sequential(nn.Conv2d(in_channes,out_channes,kernel_size=3,padding=1,stride=stride),nn.BatchNorm2d(out_channes),nn.ReLU(),nn.Conv2d(out_channes,out_channes,kernel_size=3,padding=1),nn.BatchNorm2d(out_channes))def forward(self,x):ret = self.model(x)ret = ret+self.res(x)return F.relu(ret)
def get_residual_block(num_res,in_channels,out_channels,down_first = False):blk = []for i in range(num_res):blk.append(Residual(in_channels,out_channels,i==0 and down_first,1+(i==0 and down_first)))in_channels = out_channelsreturn blk
in_channels = 1
b1 = nn.Sequential(nn.Conv2d(in_channels,64,kernel_size=7,stride=2,padding=3),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
)
b2 = nn.Sequential(*get_residual_block(3,64,64))
b3 = nn.Sequential(*get_residual_block(4,64,128,True))
b4 = nn.Sequential(*get_residual_block(6,128,256,True))
b5 = nn.Sequential(*get_residual_block(3,256,512,True))
resnet = nn.Sequential(b1,b2,b3,b4,b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(),nn.Linear(512,10))
test = torch.rand((1,1,224,224))
print("test net")
for layer in resnet:test = layer(test)print(layer.__class__.__name__,"shape:",test.shape)

lr,num_epochs,batch_size = 0.05,10, 128
train_iter,test_iter =load_data_fashion_mnist(batch_size,resize=224)
train_ch6(resnet,train_iter,test_iter,num_epochs,lr,try_gpu())

 四、 Resnet50使用keras框架实现

import numpy as np
from keras import layers
from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D
from keras.models import Model, load_model
from keras.initializers import glorot_uniform

特征块 

 

减少块 

 

def bottleneck_residual_block(X, f, filters, stage, block, reduce=False, s=2):"""    Arguments:X -- input tensor of shape (m, height, width, channels)f -- integer, specifying the shape of the middle CONV's window for the main pathfilters -- python list of integers, defining the number of filters in the CONV layers of the main pathstage -- integer, used to name the layers, depending on their position in the networkblock -- string/character, used to name the layers, depending on their position in the networkreduce -- boolean, True = identifies the reduction layer at the beginning of each learning stages -- integer, stridesReturns:X -- output of the identity block, tensor of shape (H, W, C)"""# defining name basisconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'# Retrieve FiltersF1, F2, F3 = filters# Save the input value. You'll need this later to add back to the main path. X_shortcut = Xif reduce:# if we are to reduce the spatial size, apply a 1x1 CONV layer to the shortcut path# to do that, we need both CONV layers to have similar strides X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)X = Activation('relu')(X)X_shortcut = Conv2D(filters = F3, kernel_size = (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '1',kernel_initializer = glorot_uniform(seed=0))(X_shortcut)X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)else: # First component of main pathX = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)X = Activation('relu')(X)# Second component of main pathX = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)X = Activation('relu')(X)# Third component of main pathX = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)# Final step: Add shortcut value to main path, and pass it through a RELU activation X = Add()([X, X_shortcut])X = Activation('relu')(X)return X

 ResNet50 采用以下架构

def ResNet50(input_shape, classes):"""Arguments:input_shape -- tuple shape of the images of the datasetclasses -- integer, number of classesReturns:model -- a Model() instance in Keras"""# Define the input as a tensor with shape input_shapeX_input = Input(input_shape)# Stage 1X = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', kernel_initializer=glorot_uniform(seed=0))(X_input)X = BatchNormalization(axis=3, name='bn_conv1')(X)X = Activation('relu')(X)X = MaxPooling2D((3, 3), strides=(2, 2))(X)# Stage 2X = bottleneck_residual_block(X, 3, [64, 64, 256], stage=2, block='a', reduce=True, s=1)X = bottleneck_residual_block(X, 3, [64, 64, 256], stage=2, block='b')X = bottleneck_residual_block(X, 3, [64, 64, 256], stage=2, block='c')# Stage 3 X = bottleneck_residual_block(X, 3, [128, 128, 512], stage=3, block='a', reduce=True, s=2)X = bottleneck_residual_block(X, 3, [128, 128, 512], stage=3, block='b')X = bottleneck_residual_block(X, 3, [128, 128, 512], stage=3, block='c')X = bottleneck_residual_block(X, 3, [128, 128, 512], stage=3, block='d')# Stage 4 X = bottleneck_residual_block(X, 3, [256, 256, 1024], stage=4, block='a', reduce=True, s=2)X = bottleneck_residual_block(X, 3, [256, 256, 1024], stage=4, block='b')X = bottleneck_residual_block(X, 3, [256, 256, 1024], stage=4, block='c')X = bottleneck_residual_block(X, 3, [256, 256, 1024], stage=4, block='d')X = bottleneck_residual_block(X, 3, [256, 256, 1024], stage=4, block='e')X = bottleneck_residual_block(X, 3, [256, 256, 1024], stage=4, block='f')# Stage 5 X = bottleneck_residual_block(X, 3, [512, 512, 2048], stage=5, block='a', reduce=True, s=2)X = bottleneck_residual_block(X, 3, [512, 512, 2048], stage=5, block='b')X = bottleneck_residual_block(X, 3, [512, 512, 2048], stage=5, block='c')# AVGPOOL X = AveragePooling2D((1,1), name="avg_pool")(X)# output layerX = Flatten()(X)X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)# Create the modelmodel = Model(inputs = X_input, outputs = X, name='ResNet50')return model
model = ResNet50(input_shape = (32,32, 3), classes = 10)
model.summary()

使用 plot_model 可视化网络

安装

  • conda install graphviz
  • conda install pydotplus
from keras.utils import plot_modelplot_model(model, to_file="images/resnet50.png", show_shapes=True)

 

参考:

ResNet50学习笔记 (附代码)_resnet中的恒等映射-CSDN博客

【AI】《ResNet》论文解读、代码实现与调试找错_resnet论文地址_Dreamcatcher风的博客-CSDN博客​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/238195.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一些ab命令

1.ab简介 ab是apache自带的压力测试工具,是apachebench命令的缩写。ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器如nginx、tomcat、IIS等进行压力测试。 ab的原理:ab命令会创建多个并发…

使用Docker Compose搭建CIG监控平台

CIG简介 CIG监控平台是基于CAdvisor、InfluxDB和Granfana构建的一个容器重量级监控系统,用于监控容器的各项性能指标。其中,CAdvisor是一个容器资源监控工具,用于监控容器的内存、CPU、网络IO和磁盘IO等。InfluxDB是一个开源的分布式时序、时…

单片机----汇编语言入门知识点

目录 汇编语句的格式 汇编语句的两个基本语句 子程序的调用 查表程序设计 1.x和y均为单字节数的查表程序设计 2.x为单字节数y为双字节数的查表程序设计 3.x和y均为双字节数的查表程序设计 分支转移程序设计 1.单分支选择结构 2.多分支选择结构 循环程序设计 (1) 计…

gitlab高级功能之CI/CD组件 - 实践(二)

上一篇主要讲解了CI/CD组件的原理,看起来稍微有一点枯燥,那么接下来给大家演示下如何使用。 案例 创建一个项目(README.md,template目录) 案例1 step1: 在template中新建yml文件,cat templates/test-st…

【数据结构】顺序栈与链栈

栈的特点是后进先出或先进后出,简称LIFO或FILO,通常top时刻表示栈顶的位置序号,一般空栈时top-1;入栈栈顶指针加1,s->top;出栈栈顶指针减1,s->top-- 【顺序栈】 定义: typedef struct {…

Linux基础项目开发1:量产工具——文字系统(四)

前言: 前面我们已经把显示系统,输入系统的框架搭建好了,那么有了输入和显示,显示的内容应该是什么呢?这节就要让我们一起对显示的内容,文字系统进行搭建。 目录 一、数据结构抽象 1.描述一个文字的位图&a…

导入seaborn的数据集方法load_datasets的问题

sns.load_dataset使用报错解决URLError: <urlopen error [Errno 11004] getaddrinfo failed>(windows)) import seaborn as sns import matplotlib.pyplot as plt ​ # 使用Seaborn自带的数据集 tips sns.load_datas…

力扣611题 有效三角形的个数 双指针算法

611. 有效三角形的个数 给定一个包含非负整数的数组 nums ,返回其中可以组成三角形三条边的三元组个数。 示例 1: 输⼊: nums [2,2,3,4] 输出: 3 解释:有效的组合是: 2,3,4 (使⽤第⼀个 2) 2,3,4 (使⽤第⼆个 2) 2,2,3 ⽰例 2: 输⼊: nums [4,2,3,4] 输出: 4 解…

带你用uniapp从零开发一个仿小米商场_10.开发一个占剩余窗口的滚动区域

首先是一个头部的tag切换栏,这个很简单,就不多说 源码奉上 <scroll-view scroll-x class"border scroll-row" style"height: 80rpx;"><view class"scroll-row-item" style"height: 80rpx;line-height: 80rpx;" v-for"(…

使用MD5当做文件的唯一标识,这样安全么?

使用MD5作为文件唯一标识符可靠么&#xff1f; 文章目录 使用MD5作为文件唯一标识符可靠么&#xff1f;什么是MD5&#xff1f;MD5的用途MD5作为文件唯一标识的优劣优势劣势 使用MD5作为文件唯一标识的建议其他文件标识算法结束语 什么是MD5&#xff1f; MD5&#xff08;Messag…

CentOS或RHEL安装vscode

下载rpm安装包 网络下载或者下载到本地再上传到服务器&#xff0c;点击访问国内下载地址&#xff0c;不需要积分curl -fOL https://github.com/coder/code-server/releases/download/v4.19.1/code-server-4.19.1-amd64.rpm安装 rpm -i code-server-4.19.1-amd64.rpm关闭和禁用…

LORA概述: 大语言模型的低阶适应

LORA概述: 大语言模型的低阶适应 LORA: 大语言模型的低阶适应前言摘要论文十问实验RoBERTaDeBERTaGPT-2GPT-3 结论代码调用 LORA: 大语言模型的低阶适应 前言 LoRA的核心思想在于优化预训练语言模型的微调过程&#xff0c;通过有效地处理权重矩阵的变化&#xff08;即梯度更新…