Linux篇:进程间通信

一、进程间通信原理:

1、通信是有成本的:两个或者多个进程,实现数据层面的交互,因为进程独立性的存在,导致进程通信的成本比较高。

2、进程间通信的方式:
①基本数据
②发送命令
③某种协同
④通知
......

3、进程间通信的本质:必须让不同的进程,看到同一份资源——特定形式的内存空间。这个“资源”一般是操作系统提供(第三方空间)(为什么不是我们两个进程中的一个呢?因为这样会破坏进程独立性)。进程访问这个空间进行通信,本身就是访问操作系统!而进程代表的就是用户。“资源”从创建,使用(一般)到释放,都要使用系统调用接口。所以从底层设计,从接口设计,都要从操作系统独立设计。

4、一般操作系统会有一个独立的通信模块,它隶属于文件系统,称为IPC通信模块。进程间通信是有标准的——system V &&possix。

5、基于文件级别的通信方式——管道。

二、(匿名)管道(本质是文件):让不同的进程,看到同一份资源。

1. 原理:
 · 父进程fork创建出子进程,子进程会拷贝父进程的文件描述符表,此时,父进程与子进程都会有相应的读写端指向同一个文件。此时根据要求关闭父进程与子进程相应的读写端,来形成单向通信的信道。

 · 同一个文件是内存级的,每个文件都存在自己的缓冲区,如果双方想向自己的缓冲区中写入,子进程就可以通过缓冲区读取,实现进程间通信。正因为其只能进行单向通信,故称其为管道。

 · 若进行双向通信用多个管道即可。

 · 必须有血缘关系的进程才能通信,常用于父子关系,兄弟关系和爷孙关系也可。

 · 管道是有固定大小的,在不同内核里,大小可能有差别。

2、接口:

输出型参数:将文件的文件描述符数字带出来,让用户使用。
pipefd[0]:读下标。
pipefd[1]:写下标。

//testPipe.cc#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib> // stdlib.h
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>#define N 2
#define NUM 1024using namespace std;//child:用户级缓冲区拷贝到文件级缓冲区
void Writer(int wfd)
{string s = "hello, I am child";pid_t self = getpid();int number = 0;char buffer[NUM];while(true){//构建发送字符串buffer[0] = 0;//字符串清空,只是为了提醒阅读代码的人,我把这个数组当做字符串了snprintf(buffer, sizeof(buffer), "%s-%d-%d", s.c_str(), self, number++);//int snprintf(char* str, size_t size, const char *format, ...);cout << buffer << endl;//发送/写入给父进程,system callwrite(wfd, buffer, strlen(buffer));//ssize_t write(int fd, const void * buf, size_t count);//向文件写入不需要+1sleep(1);}
}//father:内核级缓冲区拷贝到应用层缓冲区
void Reader(int rfd)
{char buffer[NUM];while(true){buffer[0] = 0;//system callssize_t n = read(rfd, buffer, sizeof(buffer));//ssize_t read(int fd, void *buf, size_t count);//sizeof != strlen, 代表buffer缓冲区大小if(n > 0){buffer[n] = 0;// 0 == '\0'cout << "father get a message[" << getpid() << "]#" << buffer << endl;}//TODO}
}int main()
{int pipefd[N] = {0};int n = pipe(pipefd);if(n < 0) return 1;//cout << "pipefd[0]:" << pipefd[0] << " , pipefd[1]: " << pipefd[1] << endl;//child -> w, father -> rpid_t id = fork();if(id < 0) return 2;if(id == 0){//childclose(pipefd[0]);//IPC codeWriter(pipefd[1]);close(pipefd[1]);exit(0);}//fatherclose(pipefd[1]);//IPC codeReader(pipefd[0]);pid_t rid = waitpid(id, nullptr, 0);if(rid < 0) return 3;close(pipefd[0]);return 0;
}
//MakefiletestPipe:testPipe.ccg++ $^ -o $@ -std=c++11
.PHONY:clean
clean:rm -f testPipe

 3、编码实现:

管道的五大特征:
①具有血缘关系的进程进行进程间通信。
②管道只能单向通信。
③多执行流共享的难免出现访问冲突的问题。临界资源竞争的问题。所以父子进程是会进程协同,同步与互斥,保护管道文件的数据安全。
④管道是面向字节流的
⑤那是基于文件的,而对象的生命周期是随进程的

管道四种的情况:
①读写端正常管道,如果为空,读端就要堵塞
②读写端正常,管道如果被写满,写端就要阻塞
③读端正常读写端关闭,读端就会读到零,表明读到的文件(pipe)结尾不会被阻塞。
④写端是正常写入,读端关闭了。操作系统就要通过信号杀掉正在写入的进程。转为③(所以子进程写入父进程读取)(操作系统是不会做低效浪费等类似的工作的,如果做了,就是操作系统的bug)。

4、管道的应用场景:

①自定义shell:指令的判断
a.分析输入的命令行字符串,获取有多少个|命令,打散多个子命令字符串。
b.malloc申请空间,pipe先申请多个管道。
c.循环创建多个子进程,每一个子进程的重定向情况。最开始:输出重定向,1->指定的一个管道的写端。中间:输入输出重定向,0标准输入重定向到上一个管道的读端,标准输出重定向到下一个管道的写端。最后一个:将输入重定向将标准输入重定向到最后一个管道的读端。
d.分别让不同的子进程执行不同的命令---exec*(exec*不会影响该进程曾经打开的文件,不会影响预先设置好的管道重定向)。

②简易版本的进程池:降低系统调用和成本。

ProcessPool.cc#include "Task.hpp"
#include <string>
#include <vector>
#include <cstdlib>
#include <cassert>
#include <ctime>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/stat.h>const int processnum = 10;//void LoadTask(std::vector<task_t> *tasks);std::vector<task_t> tasks;// 先描述
class channel
{
public:channel(int cmdfd, pid_t slaverid, const std::string &processname):_cmdfd(cmdfd), _slaverid(slaverid), _processname(processname){}
public:int _cmdfd;              // 发送任务的文件描述符pid_t _slaverid;         // 子进程PIDstd::string _processname;// 子进程的名字————方便我们打印日志
};void slaver()
{// read(0)while(true){int cmdcode = 0;int n = read(0, &cmdcode, sizeof(int)); // 如果父进程不给子进程发送数据呢?阻塞等待!if(n == sizeof(int)){//执行cmdcode对应的任务列表std::cout << "slaver say@ get a command: " << getpid() << " : cmdcode: " << cmdcode << std::endl;if(cmdcode >= 0 && cmdcode < tasks.size()) tasks[cmdcode]();}if(n == 0) break;}
}//编码规范:
//输入: const &
//输出: *
//输入输出:&
void InitProcessPool(std::vector<channel> *channels)
{// version 2 : 确保每一个子进程都只有一个写端std::vector<int> oldfds;for(int i =0; i < processnum; i++){int pipefd[2]; // 临时空间int n = pipe(pipefd);assert(!n);(void)n;pid_t id = fork();if(id == 0) // child{std::cout << " child: " << getpid() << " close history fd: ";for(auto fd : oldfds) {std::cout <<  fd << " ";close(fd); }std::cout << "\n";close(pipefd[1]);dup2(pipefd[0], 0);close(pipefd[0]);slaver();std::cout << "process : " << getpid() << "quit" << std::endl;// slaver(pipefd[0]);exit(0);}// fatherclose(pipefd[0]);// 添加channel字段了std::string name = "process-" + std::to_string(i);channels->push_back(channel(pipefd[1], id, name));oldfds.push_back(pipefd[1]);sleep(1);}
}void Debug(const std::vector<channel> &channels)
{// testfor(const auto &c : channels){std::cout << c._cmdfd << " " << c._slaverid << " " << c._processname << std::endl;}
}void Menu()
{std::cout << "#####################################" << std::endl;std::cout << "##### 1、刷新日志   2、刷新野怪 #######" << std::endl;std::cout << "##3、检测软件是否更新  4、更新血量蓝量##" << std::endl;std::cout << "############## 0、退出 ###############" << std::endl;std::cout << "#####################################" << std::endl;
}void ctrlSlaver(const std::vector<channel> &channels)
{int which = 0;//int cnt = 5;while(true){int select = 0;Menu();std::cout << "Please Enter@ ";std::cin >> select;if(select <= 0 || select >= 5) break;//1、选择任务//int cmdcode = rand()%tasks.size();int cmdcode = select - 1;//2、选择进程:负载均衡(随机数,轮转)//int processpos = rand()%channels.size();std::cout << " father say: " << " cmdcode: " << cmdcode << " already sendto " << channels[which]._slaverid << " process name: " << channels[which]._processname << std::endl;//3、发送任务write(channels[which]._cmdfd, &cmdcode, sizeof(cmdcode));which++;which %= channels.size();//cnt--;//sleep(1);}
}void QuitProcess(const std::vector<channel> &channels)
{// version1int last = channels.size()-1;for(int i = last; i >= 0; i--){close(channels[i]._cmdfd);waitpid(channels[i]._slaverid, nullptr, 0);}// for(const auto &c : channels) close(c._cmdfd);// //sleep(5);// for(const auto &c : channels) waitpid(c._slaverid, nullptr, 0);// //sleep(5);
}int main()
{LoadTask(&tasks);srand(time(nullptr)^getpid()^1023); // 种一颗随机数种子// 再组织std::vector<channel> channels;// 1、初始化InitProcessPool(&channels);Debug(channels);// 2、开始控制子进程ctrlSlaver(channels);// 3、清理收尾QuitProcess(channels);return 0;
}
//Task.hpp#pragma once#include <iostream>
#include <vector>typedef void (*task_t)();void task1()
{std::cout << "lol 刷新日志" << std::endl;
}void task2()
{std::cout << "lol 更新野区,刷新出来野怪" << std::endl;
}void task3()
{std::cout << "lol 检测软件是否更新,如果需要,就提示用户" << std::endl;
}void task4()
{std::cout << "lol 用户释放技能,更新血量蓝量" << std::endl;
}void LoadTask(std::vector<task_t> *tasks)
{tasks->push_back(task1);tasks->push_back(task2);tasks->push_back(task3);tasks->push_back(task4);
}
##MakefileProcessPool:ProcessPool.ccg++ $^ -o $@ -std=c++11
.PHONY:clean
clean:rm -f ProcessPool

以上为具有血缘关系的进程进行进程间通信
如果毫不相关的进程进行进程间通信呢?

三、命名管道:

1、 理解:如果两个不同的进程,打开同一个文件的时候,在内核中,操作系统会打开同一个文件。

 · 进程间通信的前提:先让不同进程看到同一份资源。

 · 管道文件不需要刷盘,只是内存级文件。

 · 管道怎么打开同一个文件?为什么要这么做?
通过同路径下的同一个文件名(路径+文件名具有唯一性)的方式,让不同进程看到同一份资源,进而实现不同进程间通信,所以叫命名管道。

2、编码:

 ①模拟实现命名管道的应用场景:

//server.cc#include "comm.hpp"using namespace std;int main()
{Init init;//打开管道int fd = open(FIFO_FILE, O_RDONLY);// 等待写入方打开之后,自己才会打开文件,向后执行,open 阻塞了!if(fd < 0){perror("open");exit(FIFO_OPEN_ERR);}cout << "server open file done" << endl;//开始通信while(true){char buffer[1024] = {0};int x = read(fd, buffer, sizeof(buffer));if(x > 0){buffer[x] = 0;cout << "client say# " << buffer << endl;}else if(x == 0){cout << "client quit, me too!\n" << endl;break;}else break;}close(fd);return 0;
}
//client.cc#include <iostream>
#include "comm.hpp"using namespace std;int main()
{int fd = open(FIFO_FILE, O_WRONLY);if(fd < 0){perror("open");exit(FIFO_OPEN_ERR);}cout << "client open file done" << endl;string line;while(true){cout << "Please Enter@ ";getline(cin, line);write(fd, line.c_str(), line.size());}close(fd);return 0;
}
//comm.hpp#pragma once#include <iostream>
#include <string>
#include <cerrno>
#include <cstring>
#include <cstdlib>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>#define FIFO_FILE "./myfifo"
#define MODE 0664enum{FIFO_CREATE_ERR = 1,FIFO_DELETE_ERR,FIFO_OPEN_ERR
};class Init
{
public:Init(){//创建管道int n = mkfifo(FIFO_FILE, MODE);if(n == -1){perror("mkfifo");exit(FIFO_CREATE_ERR);}}~Init(){int m = unlink(FIFO_FILE);if(m == -1){perror("unlink");exit(FIFO_DELETE_ERR);}}
};
##Makefile.PHONY:all
all:server clientserver:server.ccg++ -o $@ $^ -g -std=c++11
client:client.ccg++ -o $@ $^ -g -std=c++11.PHONY:clean
clean:rm -f server client

②模拟实现日志:输出时间,日志的等级,日志内容,文件的名称和行号。

//server.cc#include "comm.hpp"
#include "log.hpp"using namespace std;int main()
{Init init;Log log;log.Enable(Classfile);//打开管道int fd = open(FIFO_FILE, O_RDONLY);// 等待写入方打开之后,自己才会打开文件,向后执行,open 阻塞了!if(fd < 0){// log.logmessage(Fatal, "error string: %s, error code: %d",strerror(errno), errno);log(Fatal, "error string: %s, error code: %d",strerror(errno), errno);exit(FIFO_OPEN_ERR);}// log.logmessage(Info, "server open file done, error string: %s, error code: %d",strerror(errno), errno);// log.logmessage(Warning, "server open file done, error string: %s, error code: %d",strerror(errno), errno);// log.logmessage(Fatal, "server open file done, error string: %s, error code: %d",strerror(errno), errno);// log.logmessage(Debug, "server open file done, error string: %s, error code: %d",strerror(errno), errno);log(Info, "server open file done, error string: %s, error code: %d",strerror(errno), errno);log(Warning, "server open file done, error string: %s, error code: %d",strerror(errno), errno);log(Fatal, "server open file done, error string: %s, error code: %d",strerror(errno), errno);log(Debug, "server open file done, error string: %s, error code: %d",strerror(errno), errno);//开始通信while(true){char buffer[1024] = {0};int x = read(fd, buffer, sizeof(buffer));if(x > 0){buffer[x] = 0;cout << "client say# " << buffer << endl;}else if(x == 0){// log.logmessage(Debug, "client quit, me too, error string: %s, error code: %d",strerror(errno), errno);log(Debug, "client quit, me too, error string: %s, error code: %d",strerror(errno), errno);break;}else break;}close(fd);return 0;
}
//client#include <iostream>
#include "comm.hpp"using namespace std;int main()
{int fd = open(FIFO_FILE, O_WRONLY);if(fd < 0){perror("open");exit(FIFO_OPEN_ERR);}cout << "client open file done" << endl;string line;while(true){cout << "Please Enter@ ";getline(cin, line);write(fd, line.c_str(), line.size());}close(fd);return 0;
}
//comm.hpp#pragma once#include <iostream>
#include <string>
#include <cerrno>
#include <cstring>
#include <cstdlib>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>#define FIFO_FILE "./myfifo"
#define MODE 0664enum{FIFO_CREATE_ERR = 1,FIFO_DELETE_ERR,FIFO_OPEN_ERR
};class Init
{
public:Init(){//创建管道int n = mkfifo(FIFO_FILE, MODE);if(n == -1){perror("mkfifo");exit(FIFO_CREATE_ERR);}}~Init(){int m = unlink(FIFO_FILE);if(m == -1){perror("unlink");exit(FIFO_DELETE_ERR);}}
};
//log.hpp#pragma once#include <iostream>
#include <time.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>#define SIZE 1024#define Info 0
#define Debug 1
#define Warning 2
#define Error 3
#define Fatal 4#define Screen 1
#define Onefile 2
#define Classfile 3#define LogFile "log.txt"class Log
{
public:Log(){printMethod = Screen;path = "./log/";}void Enable(int method){printMethod = method;}std::string levelToString(int level){switch(level){case Info: return "Info";case Debug: return "Debug";case Warning: return "Warning";case Error: return "Error";case Fatal: return "Fatal";default: return "None";}}// void logmessage(int level, char *format, ...)// {//     time_t t = time(nullptr);//     struct tm *ctime = localtime(&t);//     char leftbuffer[SIZE];//     snprintf(leftbuffer, sizeof(leftbuffer), "[%s][%d-%d-%d %d:%d:%d]", levelToString(level).c_str(), //         ctime->tm_year+1900, ctime->tm_mon+1, ctime->tm_mday, //         ctime->tm_hour, ctime->tm_min, ctime->tm_sec);//     // va_list s;//     // va_start(s, format);//     char rightbuffer[SIZE];//     vsnprintf(rightbuffer, sizeof(rightbuffer), format, s);//     // va_end(s);//     //格式:默认部分+自定义部分//     char logtxt[SIZE*2];//     snprintf(logtxt, sizeof(logtxt), "%s %s\n", leftbuffer, rightbuffer);//     // printf("%s", logtxt);//暂时打印//     printLog(level, logtxt);// }void printLog(int level, const std::string &logtxt){switch(printMethod){case Screen:std::cout << logtxt << std::endl;break;case Onefile:printOneFile(LogFile, logtxt);break;case Classfile:printClassFile(level, logtxt);break;default:break;}}void printOneFile(const std::string &logname, const std::string &logtxt){std::string _logname = path + logname;int fd = open(_logname.c_str(), O_WRONLY|O_CREAT|O_APPEND, 0666); // "log.txt"if(fd < 0) return;write(fd, logtxt.c_str(), logtxt.size());close(fd);}void printClassFile(int level, const std::string logtxt){std::string filename = LogFile;filename += ".";filename += levelToString(level); // "log.txt.Debug/Warning/Fatal"printOneFile(filename, logtxt);}~Log(){}void operator()(int level, const char *format, ...){time_t t = time(nullptr);struct tm *ctime = localtime(&t);char leftbuffer[SIZE];snprintf(leftbuffer, sizeof(leftbuffer), "[%s][%d-%d-%d %d:%d:%d]", levelToString(level).c_str(), ctime->tm_year+1900, ctime->tm_mon+1, ctime->tm_mday, ctime->tm_hour, ctime->tm_min, ctime->tm_sec);va_list s;va_start(s, format);char rightbuffer[SIZE];vsnprintf(rightbuffer, sizeof(rightbuffer), format, s);va_end(s);//格式:默认部分+自定义部分char logtxt[SIZE*2];snprintf(logtxt, sizeof(logtxt), "%s %s\n", leftbuffer, rightbuffer);// printf("%s", logtxt);//暂时打印printLog(level, logtxt);}
private:int printMethod;std::string path;
};// 拓展:可变参数(可变参数必须要至少一个实参)
// int sum(int n, ...)
// {
//     va_list s; // char*
//     va_start(s, n);//     int sum = 0;
//     while(n)
//     {
//         sum += va_arg(s, int);
//         n--;
//     }//     va_end(s);
//     return sum;
// }
//Makefile.PHONY:all
all:server clientserver:server.ccg++ -o $@ $^ -g -std=c++11
client:client.ccg++ -o $@ $^ -g -std=c++11.PHONY:clean
clean:rm -f server client

四、System共享内存

1、原理:每个进程都要有自己对应的地址空间,有自己对应的tast_struct,通过页表将自己地址空间中的内容映射到物理内存中。在物理内存中创建一块共享空间,共享空间通过页表映射到,进程的共享区当中,并给应用层返回一个所对应连续内存空间的起始虚拟地址。从此两个进程就可以通过各自页表访问到同一块物理内存了。

2、申请共享内存步骤:
①申请内存
②挂接到进程地址空间
③返回首地址

释放共享内存步骤:去关联,释放共享内存

3、上面的操作不是进程直接做的(进程具有独立性),而是直接由操作系统来做(系统调用)。操作系统中内核结构体描述共享内存,再组织,从而管理所有内存。

4、接口:

创建共享内存(返回消息队列标识符):

获取key: 

让当前进程和指定共享内存链接起来和去关联:

 删除共享内存:

 

问题1:共享内存标识符shmflg
IPC_CREAT(单独):如果你申请的共享内存不存在就创建,存在,就获取并返回。
IPC_CREAT|IPC_EXCL:你申请的共享内存不存在,就创建,存在,就出错并返回。确保如果我们申请成功了一个共享内存,这个共享内存一定是一个新的。(IPC_EXCL不单独使用)

问题2:不过你怎么保证让不同的进程看到同一个内存资源呢?你怎么知道这个内存资源存在还是不存在呢?
谈谈key
①key是一个数字,这个数字是几不重要,关键在于它必须在内核中具有唯一性,能够让不同的进程进行唯一性标识。
②第一个进程可以通过key创建共享进程。第二个之后的进程,只要拿着同一个key,就可以和第一个进程看到同一个共享内存了。
③对于一个已经创建好的共享内存,key在哪?key在共享内存的描述对象中。
④第一次创建的时候,必须有一个key了。怎么有?ftok,它是一套算法——通过pathname和proj_id进行数值计算即可!(pathname和proj_id由用户自由指定。)
⑤key和路径都是唯一的。

问题三:key和shmid区别:
key:操作系统的标定唯一型(只在创建管理内存时使用)。
shmid:只在进程内表示资源的唯一性。

问题四:
①共享内存的生命周期是随内核的!用户不主动关闭,共享内存会一直存在。除非内核重启(用户释放)。
②接口:
查看所有的共享内存:ipcs -m
删除管理内存:ipcrm -m shmid

5、共享内存的特性:
①共享内存没有同步互斥之类的保护机制。
②共享内存是所有的进程间通信中速度最快的(由地址空间映射的方式,拷贝少,速度快)。
③共享内存内部的数据由用户自己维护。
④共享内存没有同步机制。

6、共享内存的属性:

struct shmid_ds {struct ipc_perm shm_perm; /* operation perms */int shm_segsz; /* size of segment (bytes) */__kernel_time_t shm_atime; /* last attach time */__kernel_time_t shm_dtime; /* last detach time */__kernel_time_t shm_ctime; /* last change time */__kernel_ipc_pid_t shm_cpid; /* pid of creator */__kernel_ipc_pid_t shm_lpid; /* pid of last operator */unsigned short shm_nattch; /* no. of current attaches */unsigned short shm_unused; /* compatibility */void *shm_unused2; /* ditto - used by DIPC */void *shm_unused3; /* unused */
};

7、用共享内存实现进程间通信:

// comm.hpp#ifndef __COMM_HPP__
#define __COMM_HPP__#include <iostream>
#include <string>
#include <cstdlib>
#include <cstring>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
#include "log.hpp"using namespace std;Log log;
//共享内存大小一般的大小一般建议是4096的整数倍
//4097,实际上操作系统给你的是4096*2的大小
const int size = 4096;
const string pathname = "/home/zsx";
const int proj_id = 0x6666;key_t GetKey()
{key_t k = ftok(pathname.c_str(), proj_id);if(k < 0){log(Fatal, "ftok error: %s", strerror(errno));exit(1);}log(Info, "ftok sucess, key is : 0x%x", k);return k;
}int GetShareMemHelper(int flag)
{key_t k = GetKey();// int shmid = shmget(k, size, IPC_CREAT | IPC_EXCL | 0666);int shmid = shmget(k, size, flag);if(shmid < 0){log(Fatal, "create share memory error: %s", strerror(errno));exit(2);}log(Info, "create share memory success, shmid: %d", shmid);return shmid;
}int CreateShm()
{return GetShareMemHelper(IPC_CREAT | IPC_EXCL | 0666);
}int GetShm()
{return GetShareMemHelper(IPC_CREAT);
}#endif
// log.hpp#pragma once#include <iostream>
#include <time.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>#define SIZE 1024#define Info 0
#define Debug 1
#define Warning 2
#define Error 3
#define Fatal 4#define Screen 1
#define Onefile 2
#define Classfile 3#define LogFile "log.txt"class Log
{
public:Log(){printMethod = Screen;path = "./log/";}void Enable(int method){printMethod = method;}std::string levelToString(int level){switch(level){case Info: return "Info";case Debug: return "Debug";case Warning: return "Warning";case Error: return "Error";case Fatal: return "Fatal";default: return "None";}}// void logmessage(int level, char *format, ...)// {//     time_t t = time(nullptr);//     struct tm *ctime = localtime(&t);//     char leftbuffer[SIZE];//     snprintf(leftbuffer, sizeof(leftbuffer), "[%s][%d-%d-%d %d:%d:%d]", levelToString(level).c_str(), //         ctime->tm_year+1900, ctime->tm_mon+1, ctime->tm_mday, //         ctime->tm_hour, ctime->tm_min, ctime->tm_sec);//     // va_list s;//     // va_start(s, format);//     char rightbuffer[SIZE];//     vsnprintf(rightbuffer, sizeof(rightbuffer), format, s);//     // va_end(s);//     //格式:默认部分+自定义部分//     char logtxt[SIZE*2];//     snprintf(logtxt, sizeof(logtxt), "%s %s\n", leftbuffer, rightbuffer);//     // printf("%s", logtxt);//暂时打印//     printLog(level, logtxt);// }void printLog(int level, const std::string &logtxt){switch(printMethod){case Screen:std::cout << logtxt << std::endl;break;case Onefile:printOneFile(LogFile, logtxt);break;case Classfile:printClassFile(level, logtxt);break;default:break;}}void printOneFile(const std::string &logname, const std::string &logtxt){std::string _logname = path + logname;int fd = open(_logname.c_str(), O_WRONLY|O_CREAT|O_APPEND, 0666); // "log.txt"if(fd < 0) return;write(fd, logtxt.c_str(), logtxt.size());close(fd);}void printClassFile(int level, const std::string logtxt){std::string filename = LogFile;filename += ".";filename += levelToString(level); // "log.txt.Debug/Warning/Fatal"printOneFile(filename, logtxt);}~Log(){}void operator()(int level, const char *format, ...){time_t t = time(nullptr);struct tm *ctime = localtime(&t);char leftbuffer[SIZE];snprintf(leftbuffer, sizeof(leftbuffer), "[%s][%d-%d-%d %d:%d:%d]", levelToString(level).c_str(), ctime->tm_year+1900, ctime->tm_mon+1, ctime->tm_mday, ctime->tm_hour, ctime->tm_min, ctime->tm_sec);va_list s;va_start(s, format);char rightbuffer[SIZE];vsnprintf(rightbuffer, sizeof(rightbuffer), format, s);va_end(s);//格式:默认部分+自定义部分char logtxt[SIZE*2];snprintf(logtxt, sizeof(logtxt), "%s %s\n", leftbuffer, rightbuffer);// printf("%s", logtxt);//暂时打印printLog(level, logtxt);}
private:int printMethod;std::string path;
};// 拓展:可变参数
// int sum(int n, ...)
// {
//     va_list s; // char*
//     va_start(s, n);//     int sum = 0;
//     while(n)
//     {
//         sum += va_arg(s, int);
//         n--;
//     }//     va_end(s);
//     return sum;
// }
//processa.cc#include "comm.hpp"extern Log log;int main()
{// sleep(3);int shmid = CreateShm();// log(Debug, "create shm done");// sleep(5);char *shmaddr = (char*)shmat(shmid, nullptr, 0);// log(Debug, "attach shm done, shmaddr: 0x%x", shmaddr);// sleep(5);struct shmid_ds shmds;// ipc code// 一旦有人把数据写入共享内存,不需要经过系统调用,直接就能看到数据了。while(true){cout << "client say@ " << shmaddr << endl; // 直接访问共享内存sleep(1);shmctl(shmid, IPC_STAT, &shmds);cout << "shm size: " << shmds.shm_segsz << endl;cout << "shm nattch: " << shmds.shm_nattch << endl;printf("0x%x\n", shmds.shm_perm.__key);cout << "shm mode: " << shmds.shm_perm.mode<< endl;}shmdt(shmaddr);// log(Debug, "detach shm done, shmaddr: 0x%x", shmaddr);// sleep(5);shmctl(shmid, IPC_RMID, nullptr);// log(Debug, "destory shm done, shmaddr: 0x%x", shmaddr);// sleep(5);return 0;
}
//processb.cc#include "comm.hpp"int main()
{// sleep(3);int shmid = GetShm();// log(Debug, "create shm done");// sleep(5);char *shmaddr = (char*)shmat(shmid, nullptr, 0);// log(Debug, "attach shm done, shmaddr: 0x%x", shmaddr);// sleep(5);// ipc code//一旦有了共享内存,挂接到自己的地址空间中,直接把它当成自己的内存空间来用即可。//不需要调用系统调用while(true){cout << "Please Enter@ ";// char buffer[1024]; // 缓冲区(此处没必要),因为有内存// fgets(buffer, sizeof(buffer), stdin);// memcpy(shmaddr, buffer, strlen(buffer)+1); // 当作字符串fgets(shmaddr, 4096, stdin);}shmdt(shmaddr);// log(Debug, "detach shm done, shmaddr: 0x%x", shmaddr);// sleep(5);return 0;
}
##Makefile.PHONY:all
all:processa processbprocessa:processa.ccg++ -o $@ $^ -g -std=c++11
processb:processb.ccg++ -o $@ $^ -g -std=c++11.PHONY:clean
clean:rm -f processa processb

当然,我们也可以利用命名管道实现共享内存的同步,有兴趣的同学可以尝试一下!

8、mmap函数:也是共享内存的一种。(选学)

五、消息队列(了解):

1、原理:
①必须让不同的进程看到同一个队列。
②允许不同的进程向内核中发送带类型的数据块。

2、接口:

①创建共享内存(返回消息队列标识符):

②释放共享内存:

 

③发送/接收消息队列: 

④查看所有的共享内存:ipcs -q
删除管理内存:ipcrm -m msgid 

六、IPC内核中的数据结构设计:
①在操作系统中,所有的IPC资源,都是整合进操作系统里的IPC模块中的!
②创建共享内存/消息队列就要创建对应的数据结构。这些数据结构的第一个字段类型都是ipc_perm,管理这些数据结构是通过数组(struct ipc_perm *array[])来管理的。创建共享内存/消息队列时,操作系统就要创建对应的数据结构,并将第一个字段的地址填入数组(结构体数据类型可以不一样,因为第一个字段的类型都一样)。
③从此往后,管理操纵系统中所有的Ipc资源,只要先描述,然后对所有资源进行的增删查改转化成对该数组的增删查改。
④当然,也可通过用户输入的key,找到每一个对应的ipc资源,通过比较第一个字段的ipc_perm中的key,确认进程是否已经被创建(新旧)。
⑤其中该数组的数组下标为xxxid(shmid/msgid……)(是线性递增的)
⑥当用户未来尝试访问某种资源的时候,只要将对应的地址强转成指定的类型,就可以自由访问整个结构中的任意类型。
⑦而操作系统为什么能区分指针指向的对象的类型呢?
ipc_perm是操作系统在应用层上的结构体,而在内核结构中,它的数据结构为kern_ipc_perm。它在第一个字段中增加了一种类型标志位,来让代码区分它自己是哪种ipc资源。
⑧这实际上是多态技术的一种体现。其中ipc_perm就是基类,shm_perm/msg_perm就是子类。

七、信号量:(了解)

1、原理概念

1、)当我们的进程a正在向共享内存写入时,写入了一部分就被进程b拿走了,就会导致双方发和收的数据不完整——数据不一致问题(因为共享内存没有保护机制)。
而管道不会(因为管道在通信过程中有原子性保证和同步互斥)。

2、)
①AB看到的同一份资源共享资源,如果不加保护,会导致数据不一致问题
②加锁--互斥访问--任何时刻,只允许一个执行流访问(就是执行访问)共享资源——互斥
③共享的,任何时刻只允许一个执行流访问的资源称为临界资源---一般是内存空间。
④举例:100行代码,5到10行代码才在访问临界资源。那我们访问临界资源的代码称为临界区

3、)解释一个现象:
多进程、多线程、并发打印时,显示器上的信息是错乱的、混乱的、和命令行混在一起的。这就是数据不一致问题。

4、)理解信号量:信号量/信号灯的本质是一把计数器,用来描述临界资源中资源数量的多少。
①申请计数器成功就表示,我具有访问资源的权限了。
②申请了计数器资源。我当前访问我要的资源了吗?
没有。申请了计数器资源是对资源的预定机制。
③计数器可以有效保证进入共享资源的执行流的数量。
④所以每一个,执行刘翔访问共享资源中的一部分的时候不是直接访问,而是先申请计数器资源。这个计数器就叫做信号量。
⑤我们把值只能为01两态的计数器叫做二元信号量,本质就是一个锁。
⑥让计数器为1,资源为1的本质,其实就是不将临界资源分成很多块了,而是当做一个整体整体申请,整体释放(比如管道)。
⑦要访问临界资源,需要申请信号量计数器资源。而信号量计数器也是共享资源。它要先保证自己的安全。
cnt--:C语言一条语句变成汇编,多条(3)汇编语句。
a.cnt变量的内容,内存->CPU寄存器
b.cpu内进行--操作
c.将计算结果写回cnt变量的内存位置。
进程在运行的时候可以随时被切换,多执行流都访问这个变量时,可能会出错。(线程部分详细解释)
⑧申请信号量本质是对计数器--(P操作)。
释放资源,释放信号量,本质是对计数器进行++操作(V操作)。
申请和释放PV操作——原子的:一件事情要么不做,要做就做完(两态的),没有“正在做”这样的概念。用一条汇编语句即可实现。

总结:信号量本质是一把计数器。对计数器匹配的操作叫pv操作---原子的。执行流申请资源,必须先申请信号量资源,得到信号量之后才能访问临界资源。信息量值10两态的二元信号量就是互斥功能。申请信号量的本质是:对临界资源的预定机制。

2、接口:  

①申请信号量:

②控制信号量:

③设定信号量:

 

 注:system v的接口是最难的:多线程部分来进行操作说明。

3、信号量凭什么是进程间通信的一种?
①通信不仅仅是通信数据,也在于互相协同。
②要协同,本质也是通信信号量首先被所有的通信进程看到。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/256470.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Google 发布史上最强大模型,能否抗衡 OpenAI?

昨晚 Google 发布了史上最强人工智能模型&#xff1a;Gemini。 Google CEO Sundar Pichai CEO 说 Gemini 时代是 Google 新时代的开始。 Gemini 是 Google 最新的大型语言模型&#xff0c;Pichai 首次在 6 月的 I/O 开发者大会上透露了这一消息&#xff0c;如今正式公开发布。…

利用proteus实现串口助手和arduino Mega 2560的串口通信

本例用到的proteus版本为8.13&#xff0c;ardunio IDE版本为2.2.1&#xff0c;虚拟串口vspd版本为7.2&#xff0c;串口助手SSCOM V5.13.1。软件的下载安装有很多教程&#xff0c;大家可以自行搜索&#xff0c;本文只介绍如何利用这4种软件在proteus中实现arduino Mega 2560的串…

单片机学习13——串口通信

单片机的通信功能&#xff1a; 实现单片机和单片机的信息交换&#xff0c;实现单片机和计算机的信息交换。 计算机通信是指计算机与外部设备或计算机与计算机之间的信息交换。 通信有并行通信和串行通信两种方式。 在多微机系统以及现在测控系统中信息的交换多采用串行通信方…

12.7图欧拉回路与路径,图的一些性质,存储方式,图的遍历(有向图无向图BFSDFS)

欧拉回路与欧拉路径 存在条件 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路&#xff0c;当且仅当该图所有顶点度数都为偶数,且该图是连通图。 无向图存在欧拉路径的充要条件 当且仅当该图顶点度数为奇数的点的个数为0或者2。 欧拉定理二&#xff1a; 如果一个无向图…

sql注入漏洞--MYSQL两种思路

在学习之前&#xff0c;先自己搭建了一个网站 在前端可以实现与后端数据库的交互查询 创建一个数据库名为wy&#xff0c;表名为users 建立字段&#xff0c;定义类型 插入数据 INSERT INTO users(name, password,photo, money) VALUES ("DuZZ",123456,11,100); IN…

(三)基于高尔夫优化算法GOA求解无人机三维路径规划研究(MATLAB代码)

一、无人机模型简介&#xff1a; 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、高尔夫优化算法GOA简介 高尔夫优化算法…

虚拟数据优化器VDO

本章主要介绍虚拟化数据优化器。 什么是虚拟数据优化器VDO创建VDO设备以节约硬盘空间 了解什么是VDO VDO全称是Virtual Data Optimize&#xff08;虚拟数据优化)&#xff0c;主要是为了节省硬盘空间。 现在假设有两个文件file1和 file2&#xff0c;大小都是10G。file1和 f…

Retrofit嵌套请求与适配器

一、前言&#xff1a; 1. retrofit嵌套请求 在实际开发中&#xff0c;可能会存在&#xff1a;需要先请求A接口&#xff0c;在请求B接口的情况&#xff0c;比如进入“玩android”网页请求获取收藏文章列表&#xff0c;但是需要先登录拿到Cookie才能请求搜藏文章几口&am…

【web安全】文件包含漏洞详细整理

前言 菜某的笔记总结&#xff0c;如有错误请指正。 本文用的是PHP语言作为案例 文件包含漏洞的概念 开发者使用include&#xff08;&#xff09;等函数&#xff0c;可以把别的文件中的代码引入当前文件中执行&#xff0c;而又没有对用户输入的内容进行充分的过滤&#xff0…

添加新公司代码的配置步骤-Part3

原文地址&#xff1a;配置公司代码 概述 这是讨论创建新公司代码的基本标准配置步骤的第三篇博客。在第 1 部分中&#xff0c;我列出并讨论了企业结构中需要配置的项目。我随后提供了特定 FI 配置的详细信息。在本版本中&#xff0c;我将重点关注 SD 和 MM 模块。以下是这些博…

每日一题:LeetCode-11.盛水最多的容器

每日一题系列&#xff08;day 13&#xff09; 前言&#xff1a; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f50e…

低代码——“平衡饮食”才是王道

文章目录 一、低代码的概念二、低代码的优点2.1. 高效率与快速开发2.2. 降低技术门槛2.3. 适用于快速迭代与原型开发 三、低代码的缺点3.1. 定制性不足3.2. 深度不足3.3. 可能导致技术债务 四、低代码开发的未来4.1. 深度定制化4.2. 智能化 五、低代码会替代传统编程吗&#xf…