基于深度学习yolov5实现安全帽人体识别工地安全识别系统-反光衣识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

    • 一项目简介
  • 二、功能
  • 三、系统
  • 四. 总结

一项目简介

  实现安全帽人体识别工地安全识别系统需要使用深度学习技术,特别是YOLOv5算法。下面是对基于YOLOv5实现安全帽人体识别系统的介绍:

  1. 背景和目标:
    安全帽人体识别系统是一种用于工地安全监控的智能系统,旨在检测工人是否佩戴安全帽并识别出人体。通过实时监测工人的安全状况,该系统可以及时发现安全隐患并采取相应措施,从而降低事故发生率。

  2. 技术原理:
    YOLOv5是一种基于深度学习的目标检测算法,可以实时检测和识别图像中的目标。该算法使用卷积神经网络(CNN)进行特征提取,并使用锚点、边界框和分类器来检测目标。在安全帽人体识别系统中,YOLOv5算法可以检测出佩戴安全帽的人体,并对其进行分类和定位。

  3. 系统架构:
    安全帽人体识别系统主要包括以下几个部分:

  • 摄像头采集图像:通过安装在工地上的摄像头采集图像。
  • YOLOv5算法模型:使用YOLOv5算法对采集到的图像进行实时检测和识别。
  • 数据库存储结果:将检测结果存储在数据库中,以便后续分析和处理。
  • 实时监控和报警:根据检测结果进行实时监控和报警,如发现未佩戴安全帽的工人,系统将发出警报并记录相关数据。
  1. 优势和应用场景:
    安全帽人体识别系统具有以下优势和应用场景:
  • 实时性:系统可以实时检测和识别图像中的目标,提高了监控的效率和准确性。
  • 准确性:YOLOv5算法具有较高的检测和识别准确率,可以准确检测佩戴安全帽的人体。
  • 安全性:通过实时监控和报警,可以及时发现安全隐患并采取相应措施,降低事故发生率。
  • 应用场景:该系统适用于各种工地场景,如建筑工地、道路施工、矿山开采等。
  1. 挑战和解决方案:
    实现安全帽人体识别系统面临一些挑战,如光照变化、遮挡和背景干扰等。为了解决这些问题,可以采用以下解决方案:
  • 优化算法模型:根据实际应用场景,对YOLOv5算法模型进行优化,提高检测和识别准确率。
  • 增强数据集:通过收集更多标注数据集,提高模型的泛化能力。
  • 实时处理和存储:采用高效的数据处理和存储技术,确保实时监控和报警的准确性。

二、功能

  环境:Python3.10、OpenCV、torch、PyCharm
简介:因为网上能找到的数据集基本上都是只有安全帽识别或者只有反光衣识别的,于是自己标注了一个同时有安全帽、反光衣、人、锥桶(不想要锥桶的可以删掉)的数据集。能够同时实现安全帽、反光衣、锥桶、人体的识别,适用于工地安全识别代替人防,降低安全风险。有个图形界面,可以选择实现图片检测,视频检测,摄像头实时检测三种方式,也可以使用自己的数据集训练yolo模型。
数据类别:hat(安全帽)、person(人体)、reflect(反光衣)、fanghu(锥桶)
数据集大小:537张
标注格式:yolo txt格式
目录
-images
-labels(标注好的yolo txt格式)
类别
数据集包含4个类别
-安全帽(hat)
-反光衣(reflect)
-人(person)
-防护锥桶(fanghu)
可以同时识别安全帽、反光衣和人;利用YOLOv5训练后的准确率达到95以上。
准确率和召回率:

三、系统

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

四. 总结

  总之,基于深度学习YOLOv5实现安全帽人体识别系统是一种有效的工地安全监控方法,可以提高监控效率和准确性,降低事故发生率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/259741.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

物易管预测性维护平台3.6.0版本上线,工况数据处理、设备故障模型、数据可视化等方面带来全新功能体验

物易管设备预测性维护平台V3.6.0版本近日正式发布上线,相较V3.5.0版本次主要新增优化设备工况数据接入、工况数据模型训练、数据可视化以及设备监测详情优化四个板块。新版本在处理工况数据、设备故障模型、数据分析展示以及设备监测方面带来全新的体验。 01设备工况…

听GPT 讲Rust源代码--src/tools(9)

File: rust/src/tools/rust-analyzer/crates/ide-assists/src/handlers/apply_demorgan.rs 在Rust源代码中,apply_demorgan.rs文件位于rust-analyzer工具的ide-assists库中,其作用是实现一个辅助函数,用于在代码中应用De Morgan定律的变换。 …

【后端学前端学习记录】学习计划

1、个人背景 写了足够久的后端了,常用的语言基本上都接触过,没有在工作中写过前端 一直想做一些前端的工作,但是前端技能不足加上自己审美不行,写出的界面总是很丑 所以一直对前端做不好,也没有真正下手。 2、动机 种…

MBD Introduction

介绍 MATLAB是MathWorks公司的商业数学软件,应用于科学计算、可视化以及交互式程序设计等高科技计算环境。Simulink是MATLAB中的一种可视化仿真工具。 Simulink是一个模块图环境,用于多域仿真以及基于模型的设计。它支持系统设计、仿真、自动代码生成以…

泽攸科技桌面型扫描电子显微镜(SEM)技术解析

台式扫描电子显微镜是一种利用电子束扫描样品表面并检测样品反射或发射的电子信号,从而获得样品表面形貌、结构和成分信息的仪器。它的工作原理是由电子枪发出的电子束经过栅极静电聚焦后成为直径50微米的点光源,然后在加速电压作用下,经两三…

LeetCode力扣每日一题(Java):21、合并两个有序链表

一、题目 二、解题思路 1、我的思路 两个有序链表的合并已经是老生常谈的话题了,大家肯定并不陌生 依次比较两链表结点的值,将值小的添加到新链表的末尾,并将指针后移(因为之前学C语言说说惯了指针,不知道在java中…

企业博客SEO:优化SOP,助您提升搜索引擎可见性

企业博客是互联网时代企业与用户沟通的重要渠道之一,引流成本也比较低。然而,依然有企业会处在3种状态: 1. 有博客,但内容更新不积极或搁置 2. 有博客,但内容散乱 3. 根本就没有博客 如果是这几种状态,…

数据分析基础之《matplotlib(6)—饼图》

一、饼图介绍 1、什么是饼图 饼图广泛的应用在各个领域,用于表示不同分类的占比情况,通过弧度大小来对比各种分类。饼图通过将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个区块(圆弧&#xff0…

C# Solidworks二次开发:三种获取SW设计结构树的方法-第三讲

今天要讲的文章接着上一篇讲,第三种获取SW设计结构树的方法。 这个方法的逻辑是通过先获取第一个特征,然后通过循环不断的寻找下一个特征来完成获取所有节点。 1、获取第一个特征的API如下所示:FirstFeature Method (IModelDoc2) 这个API的…

线性代数入门与学习笔记

该内容为重拾部分线性代数知识的学习笔记,内容上更多的是为了解决问题而学习的内容,并非系统化的学习。 针对的问题为:Music算法推导求解过程中的矩阵计算知识。 学习的内容包括:矩阵原理、矩阵行列式、矩阵的秩、线性变换矩阵变换…

Java入门 EditPlus的安装与配置讲解

写Java程序不建议使用EditPlus,首选idea社区版,其次是vscode, 然后是eclipse 。editplus说实话排不上号。 但既然小伙伴想了解一下怎么配置,这里就简单说一下。 下载 首先是jdk,jdk是Java开发和运行的基础&#xff…

PR剪辑视频做自媒体添加字幕快速方式(简单好用的pr视频字幕模板)

如何选择合适的字幕添加进短视频呢?首先要先确定增加的视频风格,简约、商务、科技感、炫酷;再确定用途,注释、标记、语音翻译、引用、介绍;最后在相应的模板中挑选几个尝试,悬着一个最切合主题的使用&#…