数理统计基础:参数估计与假设检验

在学习机器学习的过程中,我充分感受到概率与统计知识的重要性,熟悉相关概念思想对理解各种人工智能算法非常有意义,从而做到知其所以然。因此打算写这篇笔记,先好好梳理一下参数估计与假设检验的相关内容。

1 总体梳理

先从整体结构上进行一个把握。数理统计的主要任务是通过样本的信息推断总体的信息,即统计推断工作。统计推断主要有两大类问题:参数估计假设检验。它们都建立在抽样分布理论的基础之上,但角度不同。参数估计是利用样本信息推断未知的总体参数;而假设检验是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。参数估计又分为点估计区间估计,假设检验也可以根据具体问题分为单侧检验和双侧检验。

在正式开始前,对统计量抽样分布进行简要的介绍,有助于后面的理解。

统计量:统计量是样本的函数,且不含任何未知参数。若 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是总体 X X X 的样本,统计量可表示为 T = T ( X 1 , X 2 , . . . , X n ) T=T(X_1,X_2,...,X_n) T=T(X1,X2,...,Xn)。统计量依赖且只依赖于样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,它不含总体分布的任何未知参数。也就是说,当获得了样本观测值后,统计量的值可以被唯一确定下来。

统计量也是随机变量,统计量的分布叫抽样分布 。统计量的分布与样本分布有关,样本分布与未知的总体分布有关,因此抽样分布也与总体分布有关。一般求出统计量的分布是非常困难的事,但如果总体是正态分布,问题会变得相对简单。
以样本平均数为例,它是总体平均数的一个估计量,如果按照相同的样本容量,相同的抽样方式,反复地抽取样本,每次可以计算一个平均数,所有可能样本的平均数所形成的分布,就是样本平均数的抽样分布。

2 参数估计

总体的信息是由总体的分布来刻画的,在实际问题中,往往可以根据问题的背景确定该随机现象的总体所具有的分布类型,但是总体中往往有些参数是未知的。一般来说,这些参数很难精确求出,为此要从总体中抽取样本对其进行估计,这类问题称为参数估计问题。

2.1 点估计

点估计是通过样本值求出总体参数的一个具体的估计量和估计值(这里说的“具体的估计值”是为了和区间估计相对,区间估计是给出区间和置信度,而不是具体的值). 其一般的步骤可概括为 “抽样—构造—代值—计算”

  1. 设总体 X X X 的分布函数 F ( x ; θ ) F(x;\theta) F(x;θ) 形式已知,其中含有一个未知参数 θ \theta θ
  2. 从总体中抽取样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn
  3. 构造合适的统计量 g ( X 1 , X 2 , . . . , X n ) g(X_1,X_2,...,X_n) g(X1,X2,...,Xn)作为 θ \theta θ 的估计量,记为 θ ^ = g ( X 1 , X 2 , . . . , X n ) \hat{\theta}=g(X_1,X_2,...,X_n) θ^=g(X1,X2,...,Xn)
  4. 代入样本观测值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,得到估计值 θ ^ = g ( x 1 , x 2 , . . . , x n ) \hat{\theta}=g(x_1,x_2,...,x_n) θ^=g(x1,x2,...,xn)

2.1.1 矩估计

矩估计法的基本思想是替换原理,即用样本矩替换同阶总体矩。·其依据是由大数定律知,各阶样本矩依概率收敛于同阶总体矩,于是可令各阶样本矩与同阶总体矩相等,下式中 i 代表阶数,k 代表总体中未知参数个数,有几个未知参数就列几个方程: E ( X i ) = A i = 1 n ∑ j = 1 n x j i ( i = 1 , 2 , . . . , k ) E(X^i)=A_i=\frac{1}{n}\sum_{j=1}^nx_j^i\quad(i=1,2,...,k) E(Xi)=Ai=n1j=1nxji(i=1,2,...,k)

是对变量分布和形态特点的一组度量。n阶矩被定义为变量的n次方与其概率密度函数之积的积分。直接使用变量计算的矩被称为原始矩(raw moment),移除均值后计算的矩被称为中心矩(central moment)。变量的一阶原始矩等价于数学期望(expectation)、二至四阶中心矩被定义为方差(variance)、偏度(skewness)和峰度(kurtosis)。

举个最简单的例子,设总体 X X X 的分布为 F ( x ; θ ) F(x;\theta) F(x;θ) θ \theta θ为待估参数, X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 为来自总体的样本。那么 E ( X ) E(X) E(X) 应为 θ \theta θ 的函数 h ( θ ) h(\theta) h(θ),由大数定律知样本均值依概率收敛于总体均值,因此可令 E ( X ) = X ‾ = h ( θ ) E(X)=\overline{X}=h(\theta) E(X)=X=h(θ)将样本观测值代入求出 X ‾ \overline{X} X,再解此方程求出 θ \theta θ 即可。这个过程可以看作是用样本一阶矩 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\frac{1}{n}\sum_{i=1}^nX_i X=n1i=1nXi 估计总体一阶矩 E ( X ) E(X) E(X)的过程。结合点估计的一般步骤可知,这里构造的统计量就是样本均值。

【例】 设总体为 X X X ,总体均值 E ( X ) = μ E(X)=\mu E(X)=μ 和总体方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2 存在, X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 为来自总体的样本,求 μ \mu μ σ 2 \sigma^2 σ2的矩估计量。

要求两个未知参数,令一阶样本矩等于一阶总体矩,二阶样本矩等于二阶总体矩:
{ E ( X ) = X ‾ E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = A 2 \begin{cases} E(X)=\overline{X} \\\\E(X^2)=D(X)+[E(X)]^2=A_2 \end{cases} E(X)=XE(X2)=D(X)+[E(X)]2=A2 即: { μ = X ‾ σ 2 + μ 2 = 1 n ∑ i = 1 n X i 2 \begin{cases}\mu=\overline{X}\\ \\ \sigma^2+\mu^2=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 \end{cases} μ=Xσ2+μ2=n1i=1nXi2
解得矩估计量为 { μ ^ = X ‾ σ 2 ^ = 1 n ∑ i = 1 n X i 2 − X ‾ 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \begin{cases}\hat{\mu}=\overline{X}\\ \\ \hat{\sigma^2}=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 -\overline{X}^2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\overline{X})^2\end{cases} μ^=Xσ2^=n1i=1nXi2X2=n1i=1n(XiX)2


  • 优点: 直观简单,适用性广,无需知道总体分布的具体形式
  • 缺点: 要求总体矩存在,否则不能使用;只利用了矩的信息,没有充分利用分布对参数所提供的信息。

2.1.2 极大似然估计MLE

极大似然估计法(Maximum Likelihood Estimate) 是建立在极大似然原理基础上的。所谓极大似然,可理解为“最大可能性”,即令每个样本属于其真实标记的可能性越大越好。

极大似然原理的直观想法是:概率最大的事最可能出现。设一个随机试验有若干可能结果 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,若在一次结果中 A k A_k Ak 出现,则认为 A k A_k Ak 出现的概率较大,那未知参数的取值应当满足 A k A_k Ak 发生概率最大。

为了介绍极大似然估计,这里引入似然函数的概念:

似然函数     设 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X1,X2,...,XN 为来自总体 X X X 的简单随机样本, x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn 为样本观测值,称 L ( θ ) = ∏ i = 1 n p ( x i , θ ) L(\theta)=\prod\limits_{i=1}^np(x_i,\theta) L(θ)=i=1np(xi,θ) 为参数 θ \theta θ 的似然函数。

当总体 X X X 是离散型随机变量时, p ( x i , θ ) p(x_i,\theta) p(xi,θ) 表示 X X X 的分布列 P { X = x i } P\{X=x_i\} P{X=xi}
当总体 X X X 是连续型随机变量时, p ( x i , θ ) p(x_i,\theta) p(xi,θ) 表示 X X X 的密度函数 f ( x , θ ) f(x,\theta) f(x,θ) x i x_i xi处的取值 。

参数 θ \theta θ 的似然函数 L ( θ ) L(\theta) L(θ) 实际上就是样本 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X1,X2,...,XN 恰好取观测值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn (或其邻域)的概率。以离散型为例:

L ( θ ) = P { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } = P { X 1 = x 1 } P { X 2 = x 2 } . . . P { X n = x n } = ∏ i = 1 n p ( x i , θ ) \begin{aligned} L(\theta) &=P\{X_1=x_1,X_2=x_2,...,X_n=x_n\} \\ &=P\{X_1=x_1\}P\{X_2=x_2\}...P\{X_n=x_n\} \\ &=\prod_{i=1}^np(x_i,\theta)\end{aligned} L(θ)=P{X1=x1,X2=x2,...,Xn=xn}=P{X1=x1}P{X2=x2}...P{Xn=xn}=i=1np(xi,θ) 从这个公式也可以看出,极大似然估计的一个重要假设是:来自总体的简单随机样本 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X1,X2,...,XN 是独立同分布的。

存在一个只与观测值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn 有关是实数 θ ^ ( x 1 , x 2 , . . . , x n ) \hat{\theta}(x_1,x_2,...,x_n) θ^(x1,x2,...,xn) ,使 L ( θ ^ ) = m a x L ( θ ) L(\hat{\theta})=max\ L(\theta) L(θ^)=max L(θ) ,则称 θ ^ ( x 1 , x 2 , . . . , x n ) \hat{\theta}(x_1,x_2,...,x_n) θ^(x1,x2,...,xn) 为参数 θ \theta θ 的最大似然估计值, θ ^ ( X 1 , X 2 , . . . , X n ) \hat{\theta}(X_1,X_2,...,X_n) θ^(X1,X2,...,Xn)是极大似然估计量。

极大似然估计对未知参数的数量没有要求,可以求一个,也可以一次求出多个。它要求总体的分布是已知的。由于似然函数是多个函数乘积的形式,为简化运算可以考虑对 L ( θ ) L(\theta) L(θ) 取对数得到对数似然函数 I n L ( θ ) InL(\theta) InL(θ)

【例】 设总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 为来自总体的样本,求未知参数 μ \mu μ σ 2 \sigma^2 σ2的最大似然估计量。

2.1.3 最大后验估计MAP

2.1.4 最小二乘估计

2.1.5 贝叶斯估计

2.2 区间估计

3 假设检验

【几年前的草稿,发出来先用着、、、】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/263522.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《信息技术时代》期刊杂志论文发表投稿

《信息技术时代》期刊收稿方向:通信工程、大数据、计算机、办公自动化、信息或计算机教育、电子技术、系统设计、移动信息、图情信息研究、人工智能、智能技术、信息技术与网络安全等。 刊名:信息技术时代 主管主办单位:深圳湾科技发展有限…

【LeetCode刷题-树】--111.二叉树的最小深度

111.二叉树的最小深度 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeNode left, TreeNode right) …

类人智能体概念、能力与衍生丨AI Agents闭门研讨观点集锦

导读 在智源社区举办的「青源Workshop第27期:AI Agents 闭门研讨会」上,来自英伟达的高级应用科学家王智琳、CAMEL一作李国豪、AutoAgents一作陈光耀,以及相关技术专家们共同参与交流讨论,分享了最新的研究成果,共同探…

【C语言】字符串函数strcpystrcatstrcmpstrstr的使⽤和模拟实现

🌈write in front :🔍个人主页 : 啊森要自信的主页 ✏️真正相信奇迹的家伙,本身和奇迹一样了不起啊! 欢迎大家关注🔍点赞👍收藏⭐️留言📝>希望看完我的文章对你有小小的帮助&am…

一文1800字从0到1使用Python Flask实战构建Web应用

Python Flask是一个轻量级的Web框架,它简单易用、灵活性高,适用于构建各种规模的Web应用。本文将介绍如何使用Python Flask框架来实战构建一个简单的Web应用,并展示其基本功能和特性。 第一部分:搭建开发环境 在开始之前我们需要…

基于Java SSM框架实现高校毕业生就业满意度调查平台项目【项目源码+论文说明】

基于java的SSM框架实现高校毕业生就业满意度调查平台演示 摘要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,高校毕业生就业满意度调查统计系统当然也不能排除在外。高校毕…

王道数据结构课后代码题 p149 第8—— 12(c语言代码实现)

目录 8.假设二叉树采用二叉链表存储结构存储,试设计一个算法,计算一棵给定二叉树的所有双分支结点个数。 9.设树B是一棵采用链式结构存储的二叉树,编写一个把树 B中所有结点的左、右子树进行交换的函数。 10.假设二叉树采用二叉链存储结构存储…

[全志Tina/Linux]全志在线生成bootlogo工具

一、需求 由于全志的bootlogo文件要求使用bmp格式的32位RGBA图像,经测试在使用不同版本的ps软件修图时,导出的bootlogo.bmp经常无法被全志uboot识别,因此使用在线工具转换。 二、操作 1、登录工具网站 https://online-converting.com/ima…

git 本地有改动,远程也有改动,且文件是自动生成的配置文件

在改动过的地方 文件是.lock文件,自动生成的。想切到远程的分支,但是远程的分支也有改动过。这时候就要解决冲突,因为这是两个分支,代码都是不一样的,要先把这改动的代码提交在本地或者提交在本分支的远程才可以切到其…

51系列--基于MPX4250的压力计仿真设计

本文介绍基于MPX4250的压力计仿真设计(完整仿真源文件及代码见文末链接) MPX4250是一种线性度极强的一种压力传感器,它的线性范围为20-250kpa,测量范围也比较广泛,适用于大多数场合的压力检测。 仿真图如下 仿真运行视频 51系列…

Rsync+Sersync

服务器相关参数 源服务器 192.168.17.101 目标服务器(同步到的服务器) 192.168.17.103 ##目标服务器配置 ###1、配置rsync服务 1、安装rsync yum -y install rsync 2、配置rsync vim /etc/rsyncd.conf 配置文件内容 uid root gid root use c…

Linux权限(用户角色+文件权限属性)

Linux权限 文章目录 Linux权限一.文件权限1.快速掌握修改权限的方法(修改文件权限属性)2.对比权限的有无,以及具体的体现3.修改权限的第二套方法(修改用户角色)4.文件类型(Linux下一切皆文件) 二…