【大数据】Hudi 核心知识点详解(二)

😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 💖💖💖 将激励 🔥 博主输出更多优质内容!!!

  • Hudi 核心知识点详解(一)
  • Hudi 核心知识点详解(二)

Hudi 核心知识点详解(二)

  • 4.Hudi 核心点解析
    • 4.1 基本概念
      • 4.1.1 时间轴 Timeline
      • 4.1.2 文件管理
      • 4.1.3 索引 Index
    • 4.2 表的存储类型
      • 4.2.1 数据计算模型
        • 4.2.1.1 批式模型(Batch)
        • 4.2.1.2 流式模型(Stream)
        • 4.2.1.3 增量模型(Incremental)
      • 4.2.2 查询类型(Query Type)
        • 4.2.2.1 快照查询(Snapshot Queries)
        • 4.2.2.2 增量查询(Incremental Queries)
        • 4.2.2.3 读优化查询(Read Optimized Queries)
      • 4.2.3 Hudi 支持表类型
        • 4.2.3.1 写时复制表(COW)
        • 4.2.3.2 读时合并表(MOR)
        • 4.2.3.3 COW VS MOR
      • 4.2.4 数据写操作类型
        • 4.2.4.1 写流程(UPSERT)
        • 4.2.4.2 写流程(INSERT)

4.Hudi 核心点解析

4.1 基本概念

Hudi 提供了 Hudi 表的概念,这些表支持 CRUD 操作,可以利用现有的大数据集群比如 HDFS 做数据文件存储,然后使用 SparkSQL 或 Hive 等分析引擎进行数据分析查询。

在这里插入图片描述

Hudi 表的三个主要组件:

  • ✅ 有序的时间轴元数据,类似于数据库事务日志。
  • ✅ 分层布局的数据文件:实际写入表中的数据。
  • ✅ 索引(多种实现方式):映射包含指定记录的数据集。

4.1.1 时间轴 Timeline

Hudi 核心:

  • 在所有的表中维护了一个包含在不同的即时(Instant)时间对数据集操作(比如新增、修改或删除)的时间轴(Timeline)。
  • 在每一次对 Hudi 表的数据集操作时都会在该表的 Timeline 上生成一个 Instant,从而可以实现在仅查询某个时间点之后成功提交的数据,或是仅查询某个时间点之前的数据,有效避免了扫描更大时间范围的数据。
  • 可以高效地只查询更改前的文件(如在某个 Instant 提交了更改操作后,仅 query 某个时间点之前的数据,则仍可以 query 修改前的数据)。

在这里插入图片描述
Timeline 是 Hudi 用来管理提交(commit)的抽象,每个 commit 都绑定一个固定时间戳,分散到时间线上。

在 Timeline 上,每个 commit 被抽象为一个 Hoodie Instant,一个 Instant 记录了一次提交(commit)的 行为时间戳、和 状态

在这里插入图片描述
图中采用时间(小时)作为分区字段,从 10 : 00 10:00 10:00 开始陆续产生各种 commits 10 : 20 10:20 10:20 来了一条 9 : 00 9:00 9:00 的数据,该数据仍然可以落到 9 : 00 9:00 9:00 对应的分区,通过 Timeline 直接消费 10 : 00 10:00 10:00 之后的增量更新(只消费有新 commitsgroup),那么这条延迟的数据仍然可以被消费到。

时间轴(Timeline)的实现类(位于 hudi-common-xx.jar 中),时间轴相关的实现类位于 org.apache.hudi.common.table.timeline 包下。

在这里插入图片描述

4.1.2 文件管理

Hudi 将 DFS 上的数据集组织到基本路径(HoodieWriteConfig.BASEPATHPROP)下的目录结构中。

数据集分为多个分区(DataSourceOptions.PARTITIONPATHFIELDOPT_KEY),这些分区与 Hive 表非常相似,是包含该分区的数据文件的文件夹。

在这里插入图片描述
在每个分区内,文件被组织为文件组,由文件 id 充当唯一标识。每个文件组包含多个文件切片,其中每个切片包含在某个即时时间的提交 / 压缩生成的基本列文件(.parquet)以及一组日志文件(.log),该文件包含自生成基本文件以来对基本文件的插入 / 更新。

在这里插入图片描述
Hudi 的 base file (parquet 文件) 在 footermeta 去记录了 record key 组成的 BloomFilter,用于在 file based index 的实现中实现高效率的 key contains 检测。

Hudi 的 logavro 文件)是自己编码的,通过积攒数据 buffer 以 LogBlock 为单位写出,每个 LogBlock 包含 magic numbersizecontentfooter 等信息,用于数据读、校验和过滤。

在这里插入图片描述

4.1.3 索引 Index

Hudi 通过索引机制提供高效的 Upsert 操作,该机制会将一个 RecordKey + PartitionPath 组合的方式作为唯一标识映射到一个文件 ID,而且这个唯一标识和文件组 / 文件 ID 之间的映射自记录被写入文件组开始就不会再改变。

  • 全局索引:在全表的所有分区范围下强制要求键保持唯一,即确保对给定的键有且只有一个对应的记录。
  • 非全局索引:仅在表的某一个分区内强制要求键保持唯一,它依靠写入器为同一个记录的更删提供一致的分区路径。

在这里插入图片描述

4.2 表的存储类型

4.2.1 数据计算模型

Hudi 是 Uber 主导开发的开源数据湖框架,所以大部分的出发点都来源于 Uber 自身场景,比如司机数据和乘客数据通过订单 Id 来做 Join 等。

在 Hudi 过去的使用场景里,和大部分公司的架构类似,采用批式和流式共存的 Lambda 架构,后来 Uber 提出增量 Incremental 模型,相对批式来讲,更加实时;相对流式而言,更加经济。

在这里插入图片描述

4.2.1.1 批式模型(Batch)

批式模型就是使用 MapReduce、Hive、Spark 等典型的批计算引擎,以小时任务或者天任务的形式来做数据计算。

  • 延迟:小时级延迟或者天级别延迟。这里的延迟不单单指的是定时任务的时间,在数据架构里,这里的延迟时间通常是定时任务间隔时间 + 一系列依赖任务的计算时间 + 数据平台最终可以展示结果的时间。数据量大、逻辑复杂的情况下,小时任务计算的数据通常真正延迟的时间是 2 − 3 2-3 23 小时。
  • 数据完整度:数据较完整。以处理时间为例,小时级别的任务,通常计算的原始数据已经包含了小时内的所有数据,所以得到的数据相对较完整。但如果业务需求是事件时间,这里涉及到终端的一些延迟上报机制,在这里,批式计算任务就很难派上用场。
  • 成本:成本很低。只有在做任务计算时,才会占用资源,如果不做任务计算,可以将这部分批式计算资源出让给在线业务使用。从另一个角度来说成本是挺高的,如原始数据做了一些增删改查,数据晚到的情况,那么批式任务是要全量重新计算。

在这里插入图片描述

4.2.1.2 流式模型(Stream)

流式模型,典型的就是使用 Flink 来进行实时的数据计算。

  • 延迟:很短,甚至是实时。
  • 数据完整度:较差。因为流式引擎不会等到所有数据到齐之后再开始计算,所以有一个 watermark 的概念,当数据的时间小于 watermark 时,就会被丢弃,这样是无法对数据完整度有一个绝对的保障。在互联网场景中,流式模型主要用于活动时的数据大盘展示,对数据的完整度要求并不算很高。在大部分场景中,用户需要开发两个程序,一是流式数据生产流式结果,二是批式计算任务,用于次日修复实时结果。
  • 成本:很高。因为流式任务是常驻的,并且对于多流 Join 的场景,通常要借助内存或者数据库来做 state 的存储,不管是序列化开销,还是和外部组件交互产生的额外 IO,在大数据量下都是不容忽视的。

在这里插入图片描述

4.2.1.3 增量模型(Incremental)

针对批式和流式的优缺点,Uber 提出了 增量模型Incremental Mode),相对批式来讲,更加实时;相对流式而言,更加经济。

增量模型,简单来讲,是以 mini batch 的形式来跑准实时任务。Hudi 在增量模型中支持了两个最重要的特性:

  • Upsert:这个主要是解决批式模型中,数据不能插入、更新的问题,有了这个特性,可以往 Hive 中写入增量数据,而不是每次进行完全的覆盖。(Hudi 自身维护了 keyfile 的映射,所以当 upsert 时很容易找到 key 对应的文件)
  • Incremental Query:增量查询,减少计算的原始数据量。以 Uber 中司机和乘客的数据流 Join 为例,每次抓取两条数据流中的增量数据进行批式的 Join 即可,相比流式数据而言,成本要降低几个数量级。

在这里插入图片描述

4.2.2 查询类型(Query Type)

Hudi 支持三种不同的查询表的方式:Snapshot QueriesIncremental QueriesRead Optimized Queries

在这里插入图片描述

4.2.2.1 快照查询(Snapshot Queries)
  • 查询某个增量提交操作中数据集的最新快照,先进行动态合并最新的基本文件(Parquet)和增量文件(Avro)来提供近实时数据集(通常会存在几分钟的延迟)。
  • 读取所有 partition 下每个 FileGroup 最新的 FileSlice 中的文件,Copy On Write 表读 parquet 文件,Merge On Read 表读 parquet + log 文件。

在这里插入图片描述

4.2.2.2 增量查询(Incremental Queries)
  • 仅查询新写入数据集的文件,需要指定一个 Commit / Compaction 的即时时间(位于 Timeline 上的某个 Instant)作为条件,来查询此条件之后的新数据。
  • 可查看自给定 commit / delta commit 即时操作以来新写入的数据,有效的提供变更流来启用增量数据管道。

在这里插入图片描述

4.2.2.3 读优化查询(Read Optimized Queries)
  • 直接查询基本文件(数据集的最新快照),其实就是列式文件(Parquet)。并保证与非 Hudi 列式数据集相比,具有相同的列式查询性能。
  • 可查看给定的 commit / compact 即时操作的表的最新快照。
  • 读优化查询和快照查询相同仅访问基本文件,提供给定文件片自上次执行压缩操作以来的数据。通常查询数据的最新程度的保证取决于压缩策略。

在这里插入图片描述

4.2.3 Hudi 支持表类型

Hudi 提供两类型表:写时复制Copy on WriteCOW)表和 读时合并Merge On ReadMOR)表。

  • 对于 Copy-On-Write Table,用户的 update 会重写数据所在的文件,所以是一个写放大很高,但是读放大为 0 0 0,适合 写少读多 的场景。
  • 对于 Merge-On-Read Table,整体的结构有点像 LSM-Tree,用户的写入先写入到 delta data 中,这部分数据使用行存,这部分 delta data 可以手动 merge 到存量文件中,整理为 parquet 的列存结构。

在这里插入图片描述

4.2.3.1 写时复制表(COW)

Copy on Write 简称 COW,顾名思义,它是在数据写入的时候,复制一份原来的拷贝,在其基础上添加新数据。

正在读数据的请求,读取的是最近的完整副本,这类似 MySQL 的 MVCC 的思想。

在这里插入图片描述

  • ✅ 优点:读取时,只读取对应分区的一个数据文件即可,较为高效。
  • ⭕ 缺点:数据写入的时候,需要复制一个先前的副本再在其基础上生成新的数据文件,这个过程比较耗时。

在这里插入图片描述
COW 表主要使用列式文件格式(Parquet)存储数据,在写入数据过程中,执行同步合并,更新数据版本并重写数据文件,类似 RDBMS 中的 B-Tree 更新。

  • 更新 update:在更新记录时,Hudi 会先找到包含更新数据的文件,然后再使用更新值(最新的数据)重写该文件,包含其他记录的文件保持不变。当突然有大量写操作时会导致重写大量文件,从而导致极大的 I/O 开销。
  • 读取 read:在读取数据时,通过读取最新的数据文件来获取最新的更新,此存储类型适用于少量写入和大量读取的场景。
4.2.3.2 读时合并表(MOR)

Merge On Read 简称 MOR,新插入的数据存储在 delta log 中,定期再将 delta log 合并进行 parquet 数据文件。

读取数据时,会将 delta log 跟老的数据文件做 merge,得到完整的数据返回。下图演示了 MOR 的两种数据读写方式。

在这里插入图片描述

  • ✅ 优点:由于写入数据先写 delta log,且 delta log 较小,所以写入成本较低。
  • ⭕ 缺点:需要定期合并整理 compact,否则碎片文件较多。读取性能较差,因为需要将 delta log 和老数据文件合并。

MOR 表是 COW 表的升级版,它使用列式(parquet)与行式(avro)文件混合的方式存储数据。在更新记录时,类似 NoSQL 中的 LSM-Tree 更新。

  • 更新:在更新记录时,仅更新到增量文件(Avro)中,然后进行异步(或同步)的 compaction,最后创建列式文件(parquet)的新版本。此存储类型适合频繁写的工作负载,因为新记录是以追加的模式写入增量文件中。
  • 读取:在读取数据集时,需要先将增量文件与旧文件进行合并,然后生成列式文件成功后,再进行查询。
4.2.3.3 COW VS MOR

对于写时复制(COW)和读时合并(MOR)writer 来说,Hudi 的 WriteClient 是相同的。

  • 🚀 COW 表,用户在 snapshot 读取的时候会扫描所有最新的 FileSlice 下的 base file
  • 🚀 MOR 表,在 READ OPTIMIZED 模式下,只会读最近的经过 compactioncommit
权衡写时复制 COW读时合并 MOR
数据延迟更高更低
更新代价(I/O)更高(重写整个 parquet 文件)更低(追加到增量日志)
Parquet 文件大小更小(高更新代价(I/O))更大(低更新代价)
写放大更高更低(取决于压缩策略)
适用场景写少读多写多读少

4.2.4 数据写操作类型

在 Hudi 数据湖框架中支持三种方式写入数据:UPSERT插入更新)、INSERT插入)和 BULK INSERT写排序)。

  • UPSERT:默认行为,数据先通过 index 打标(INSERT / UPDATE),有一些启发式算法决定消息的组织以优化文件的大小。

  • INSERT:跳过 index,写入效率更高

  • BULK INSERT:写排序,对大数据量的 Hudi 表初始化友好,对文件大小的限制 best effort(写 HFile)。

在这里插入图片描述

4.2.4.1 写流程(UPSERT)

1️⃣ Copy On Write 类型表,UPSERT 写入流程

  • 第一步:先对 records 按照 record key 去重。
  • 第二步:首先对这批数据创建索引 (HoodieKeyHoodieRecordLocation);通过索引区分哪些 recordsupdate,哪些 recordsinsertkey 第一次写入)。
  • 第三步:对于 update 消息,会直接找到对应 key 所在的最新 FileSlice 的 base 文件,并做 merge 后写新的 base file (新的 FileSlice)。
  • 第四步:对于 insert 消息,会扫描当前 partition 的所有 SmallFile(小于一定大小的 base file),然后 merge 写新的 FileSlice;如果没有 SmallFile,直接写新的 FileGroup + FileSlice

2️⃣ Merge On Read 类型表,UPSERT 写入流程

  • 第一步:先对 records 按照 record key 去重(可选)。
  • 第二步:首先对这批数据创建索引 (HoodieKeyHoodieRecordLocation);通过索引区分哪些 recordsupdate,哪些 recordsinsertkey 第一次写入)。
  • 第三步:如果是 insert 消息,如果 log file 不可建索引(默认),会尝试 merge 分区内最小的 base file (不包含 log file 的 FileSlice),生成新的 FileSlice;如果没有 base file 就新写一个 FileGroup + FileSlice + base file;如果 log file 可建索引,尝试 append 小的 log file,如果没有就新写一个 FileGroup + FileSlice + base file
  • 第四步:如果是 update 消息,写对应的 file group + file slice,直接 append 最新的 log file(如果碰巧是当前最小的小文件,会 merge base file,生成新的 file slicelog file 大小达到阈值会 roll over 一个新的。
4.2.4.2 写流程(INSERT)

1️⃣ Copy On Write 类型表,INSERT 写入流程

  • 第一步:先对 records 按照 record key 去重(可选);
  • 第二步:不会创建 Index
  • 第三步:如果有小的 base file 文件,merge base file,生成新的 FileSlice + base file,否则直接写新的 FileSlice + base file

2️⃣ Merge On Read 类型表,INSERT 写入流程

  • 第一步:先对 records 按照 record key 去重(可选);
  • 第二步:不会创建 Index
  • 第三步:如果 log file 可索引,并且有小的 FileSlice,尝试追加或写最新的 log file;如果 log file 不可索引,写一个新的 FileSlice + base file

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264595.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker-centos中基于keepalived+niginx模拟主从热备完整过程

文章目录 一、环境准备二、主机1、环境搭建1.1 镜像拉取1.2 创建网桥1.3 启动容器1.4 配置镜像源1.5 下载工具包1.6 下载keepalived1.7 下载nginx 2、配置2.1 配置keepalived2.2 配置nginx2.2.1 查看nginx.conf2.2.2 修改index.html 3、启动3.1 启动nginx3.2 启动keepalived 4、…

【小白专用】php执行sql脚本 更新23.12.10

可以使用 PHP 的 mysqli 扩展来执行 SQL 脚本。具体步骤如下: 连接到数据库;打开 SQL 脚本文件并读取其中的 SQL 语句;逐条执行 SQL 语句;关闭 SQL 脚本文件;关闭数据库连接。 以下是通过 mysqli 执行 SQL 脚本的示例…

使用eXtplorer本地搭建文件管理器并内网穿透远程访问本地数据

文章目录 1. 前言2. eXtplorer网站搭建2.1 eXtplorer下载和安装2.2 eXtplorer网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1. 前言 通过互联网传输文件,是互联网最重要的应用之一,无论是…

SpringSecurity(四)

SpringSecurity初始化的本质 一、对SpringSecurity初始化的几个疑问 通过前面第一次请求访问的分析我们明白了一个请求就来后的具体处理流程 对于一个请求到来后会通过FilterChainProxy来匹配一个对应的过滤器链来处理该请求。那么这里我们就有几个疑惑。 FilterChainProxy什…

【STM32】ADC模数转换器

1 ADC简介 ADC(Analog-Digital Converter)模拟-数字转换器 ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁 STM32是数字电路,只有高低电平,没有几V电压的概念&#xff…

pytorch一致数据增强

分割任务对 image 做(某些)transform 时,要对 label(segmentation mask)也做对应的 transform,如 Resize、RandomRotation 等。如果对 image、label 分别用 transform 处理一遍,则涉及随机操作的…

基于深度学习的超分辨率图像技术一览

超分辨率(Super-Resolution)即通过硬件或软件的方法提高原有图像的分辨率,图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题,在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。 SR取得了显著进步。一般可以将现有…

Stable diffusion 简介

Stable diffusion 是 CompVis、Stability AI、LAION、Runway 等公司研发的一个文生图模型,将 AI 图像生成提高到了全新高度,其效果和影响不亚于 Open AI 发布 ChatGPT。Stable diffusion 没有单独发布论文,而是基于 CVPR 2022 Oral —— 潜扩…

048:利用vue-video-player播放m3u8

第048个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

ThingWorx 9.2 Windows安装

参考官方文档安装配置 1 PostgreSQL 13.X 2 Java, Apache Tomcat, and ThingWorx PTC Help Center 参考这里安装 数据库 C:\ThingworxPostgresqlStorage 设置为任何人可以full control 数据库初始化 pgadmin4 创建用户twadmin并记录口令password Admin Userpostgres Thin…

基础宠物商店管理系统(Java)大一程序设计

一.开发环境 Windows 11 -- JDK 21 -- IDEA 2021.3.3 二.需求 三.代码部分 //创建一个宠物类,被另外两类继承public class Pet {private String name;private int age;private String gender;private double cost0;//买进价格private double sellprice0;//卖出价…

微信小程序制作-背单词的小程序制作

微信小程序–背单词的 好久没有发过文章了,但是不代表着我不去学习了喽,以下是我最近做的东西,前端的UI由朋友设计的,目前这个是前端使用的是微信小程序后端是Python的一个轻量型框架,FastApi,嗯&#xff…