【概率方法】MCMC 之 Gibbs 采样

上一篇文章讲到,MCMC 中的 HM 算法,它可以解决拒绝采样效率低的问题,但是实际上,当维度高的时候 HM 算法还是在同时处理多个维度,以两个变量 x = [ x , y ] \mathbf{x} = [x,y] x=[x,y] 来说,也就是同时从联合分布里面 p ( x ) = p ( x , y ) p(\mathbf{x}) = p(x,y) p(x)=p(x,y) 进行采样,在某些情况下有维度灾难的问题。

有些时候,我们从联合分布 p ( x , y ) p(x,y) p(x,y) 里面采样很难,但是从条件分布 p ( x ∣ y ) , p ( y ∣ x ) p(x|y), p(y|x) p(xy),p(yx) 里面采样很容易,

Gibbs 采样

为了解决维度灾难的问题,Gibbs 把直接从联合分布 p ( x , y ) p(x,y) p(x,y)里面进行采样的问题转化成了逐个对每一个维度的条件分布进行采样 :
对于二维情况,我们先得到每一个维度在给定其他维度时候的条件分布:
p ( x ∣ y ) , p ( y ∣ x ) p(x|y), \ \ \ p(y|x) p(xy),   p(yx)
先从一个任意选择的点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 开始。
先给定 y 0 y_0 y0 ,采样 x 1 x_1 x1 p ( x 1 ∣ y 0 ) p(x_1|y_0) p(x1y0)
再给定 x 1 x_1 x1,采样 y 1 y_1 y1 p ( y 1 ∣ x 1 ) p(y_1|x_1) p(y1x1)

对所有维度轮换采样完成之后,就得到了新的采样点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),如此进行下去,采样得到整个序列
{ x 0 , . . . , x t } = { ( x 0 , y 0 ) , . . . , ( x t , y t ) } \{\mathbf{x}_0,...,\mathbf{x}_t\} = \{(x_0,y_0),...,(x_t,y_t)\} {x0,...,xt}={(x0,y0),...,(xt,yt)}

优点

  • Gibbs 采样接受率为 1,采样效率更高
  • 在知道各个维度的条件分布的时候,可以处理高维分布

  • 由于马尔可夫性,前后的样本是相关的,所以也可以用 Thinning 降低自相关性,或者其他方法。
  • 当目标分布比较极端的时候可能难以收敛
  • 在这里插入图片描述

代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr

# Goal: Sample from bivariate Normal

automatic_samples = np.random.multivariate_normal([0,0], [[1, 0.5], [0.5,1]], 10000)
plt.scatter(automatic_samples[:,0], automatic_samples[:,1], s=5)![请添加图片描述](https://img-blog.csdnimg.cn/direct/b7f96ec7214f4c64be016e1a20df48f6.png)

请添加图片描述

# Gibbs Sampling

samples = {'x': [1], 'y': [-1]}num_samples = 10000for _ in range(num_samples):curr_y = samples['y'][-1]new_x = np.random.normal(curr_y/2, np.sqrt(3/4))new_y = np.random.normal(new_x/2, np.sqrt(3/4))samples['x'].append(new_x)samples['y'].append(new_y)plt.scatter(samples['x'], samples['y'], s=5)

请添加图片描述

和 numpy 自带采样的分布是匹配的

plt.hist(automatic_samples[:,0], bins=20, density=True, alpha=0.5)
plt.hist(samples['x'], bins=20, density=True, alpha=0.5)

请添加图片描述

plt.hist(automatic_samples[:,1], bins=20, density=True, alpha=0.5)
plt.hist(samples['y'], bins=20, density=True, alpha=0.5)

请添加图片描述

查看相关性

plt.scatter(automatic_samples[:-1,0], automatic_samples[1:,0], s=5)
print(pearsonr(automatic_samples[:-1,0], automatic_samples[1:,0])[0])

请添加图片描述

plt.scatter(samples['x'][:-1], samples['x'][1:], s=5)
print(pearsonr(samples['x'][:-1], samples['x'][1:])[0])

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/264824.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习 | Python贝叶斯超参数优化模型答疑

机器学习 | Python贝叶斯超参数优化模型答疑 目录 机器学习 | Python贝叶斯超参数优化模型答疑问题汇总问题1答疑问题2答疑问题3答疑问题汇总 问题1:想问一下贝叶斯优化是什么? 问题2:为什么使用贝叶斯优化? 问题3:如何实现? 问题1答疑 超参数优化在大多数机器学习流水线…

[GPT]Andrej Karpathy微软Build大会GPT演讲(上)--GPT如何训练

前言 OpenAI的创始人之一,大神Andrej Karpthy刚在微软Build 2023开发者大会上做了专题演讲:State of GPT(GPT的现状)。 他详细介绍了如何从GPT基础模型一直训练出ChatGPT这样的助手模型(assistant model)。作者不曾在其他公开视频里看过类似的内容,这或许是OpenAI官方…

Project Euler 865 Triplicate Numbers(线性dp)

题目 能通过每次消除3个一样的数字,最终把数字消成空的数字是合法的, 求串长度不超过n的,没有前导0的数字中,合法的数字的个数 n10000,答案对998244353取模,只需要输出数字 思路来源 乱搞AC 题解 暴力…

MacBook电脑内存容量小根本不够用?如何一键解决?

得益于M1系列芯片的强势表现,很多朋友都换用了MacBook,首次接触到了macOS系统。但出乎意料的是,很多人就开始受罪了……明明这么出色的硬件,为何到处都不顺手呢?尤其是容量,MacBook相比同价位的Windows笔记…

在 Qt Creator 中编写 Doxygen 风格的注释

2023年12月10日,周日上午 如何生成Doxygen 风格的注释 在需要Doxygen 风格注释的函数上方输入 /**,然后按下 Enter 键。Qt Creator 将自动为你生成一个注释模板。 输入,Qt Creator会自动帮你补全Doxygen标签 不得不说,写了Doxyge…

江科大 STM32入门教程 P14 定时中断和定时器外部时钟

1 通用定时器中断的初始化(Time2) 1.1 开启RCC的TimxCLK时钟, 由于Time2是由APB1总线的外设控制的 RccAPB1PeriphClockCmd(RCC_APB1PeriPh_TIM2,ENABLE);//使能APB1总线1.2 选择时基单元时钟 选择时基单元内部时钟 TIM_InteralClockConfig(IIM2);//内…

openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup

文章目录 openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup150.1 背景信息150.2 前提条件150.3 语法150.4 参数说明150.5 示例 openGauss学习笔记-150 openGauss 数据库运维-备份与恢复-物理备份与恢复之gs_backup 150.1 背景信息 openGaus…

alpine linux 之嵌入式搭建

目录 序启动修改源安装 openssh设置开机网络 ip参考 序 最近发现了 alpine linux 这个文件系统,这是一个基于 musl libc 和 busybox 的面向安全的轻量级 Linux 发行版。 下载了他的文件系统,只有 3M 多的压缩包,非常适合嵌入式系统。 地址…

037.Python面向对象_关于抽象类和抽象方法

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…

MIT线性代数笔记-第28讲-正定矩阵,最小值

目录 28.正定矩阵,最小值打赏 28.正定矩阵,最小值 由第 26 26 26讲的末尾可知在矩阵为实对称矩阵时,正定矩阵有以下四种判定方法(都是充要条件): 所有特征值都为正左上角所有 k k k阶子矩阵行列式都为正&…

Linux 基础IO

文章目录 前言基础IO定义系统IO接口文件描述符重定向原理缓冲区刷新 前言 要知道每个函数/接口的全部参数和返回值建议去官网或者直接在Linux的man手册中查,这不是复制粘贴函数用法的文章。 C语言文件读写介绍链接 基础IO定义 IO是Input/Output的缩写&#xff0c…

【Linux】进程周边001之进程概念

👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.基本概念 2.描述进程-PCB…