多维时序 | MATLAB实现SAO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现SAO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • 多维时序 | MATLAB实现SAO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

4

6
7
8
9

基本介绍

MATLAB实现SAO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测。

模型描述

MATLAB实现SAO-CNN-BiGRU-Multihead-Attention雪消融算法优化结合卷积神经网络 (CNN) 和双向门控循环单元 (BiGRU融合多头自注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

多头自注意力机制使得模型能够更灵活地对不同时间步的输入信息进行加权。这有助于模型更加集中地关注对预测目标有更大影响的时间点。​自注意力机制还有助于处理时间序列中长期依赖关系,提高了模型在预测时对输入序列的全局信息的感知。

SAO算法相较于其他优化算法的优势在于其独特的双重种群机制、高效的探索与利用策略以及灵活的位置更新方程。这些特点使其在处理复杂优化问题时表现出更好的平衡能力、搜索效率和适应性,特别是在多峰值和高维问题上。此外,SAO算法的物理背景和数学原理为解决实际问题提供了新的视角。CNN可以用于提取时间序列数据中的局部特征。通过使用卷积层和池化层,CNN可以捕捉到时间序列中的空间和时间依赖关系。卷积层可以识别不同频率的模式,而池化层可以减少特征维度并保留最重要的信息。
接下来,使用双向门控循环单元(BiGRU)来学习时间序列数据中的长期依赖性。BiGRU结构可以同时考虑过去和未来的信息,从而更好地捕捉时间序列中的动态模式。通过双向结构,模型可以利用过去和未来的上下文信息来进行更准确的预测。
最后,引入多头自注意力机制,可以进一步提高模型的性能。自注意力机制允许模型自动学习时间序列数据中不同位置的重要性权重,从而更好地关注关键的时间步。多头自注意力机制可以并行地学习多个不同的注意力权重,以捕捉不同的关注点。
通过将CNN、BiGRU和多头自注意力机制结合起来,可以构建一个强大的模型,用于雪消融的多变量时间序列预测。模型可以同时考虑局部特征、长期依赖性和重要性权重,从而提高预测的准确性。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现SAO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/267101.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VSCode中如何查看EDI报文?

VSCode是开发人员常用的一款软件,为了降低EDI报文的阅读门槛,知行的开发人员设计了EDI插件,可以在VSCode中下载使用。 如何打开一个EDI报文——VSCode EDI插件介绍 EDI插件下载流程 进入VSCode,打开Extensions,在搜索…

从零构建属于自己的GPT系列6:模型本地化部署2(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)

🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:数据预处理 从零构建属于自己的GPT系列2:模型训…

【cocotb】【达坦科技DatenLord】Cocotb Workshop分享

https://www.bilibili.com/video/BV19e4y1k7EE/?spm_id_from333.337.search-card.all.click&vd_sourcefd0f4be6d0a5aaa0a79d89604df3154a 方便RFM实现 cocotb_test 替代makefile , 类似python 函数执行

JavaDay17

创建不可变集合 import java.util.Iterator; import java.util.List;public class Test {public static void main(String[] args) {/*创建不可变的List集合* "张三" "李四" "王五" "赵六*///一旦创建之后 是无法进行修改的 在下面的代码…

Nginx的location和rewrite的使用

目录 常用的Nginx 正则表达式 location location 大致可以分为三类: 精准匹配:location / {...} 一般匹配:location / {...} 正则匹配:location ~ / {...} location 常用的匹配规则 location 优先级 location 示例说明…

23种设计模式之模板方法模式(模板模式)

23种设计模式之模板方法模式(模板模式) 文章目录 23种设计模式之模板方法模式(模板模式)设计思想模板方法的优缺点模板方法模式的缺点代码解析小结 设计思想 原文:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构…

jsp文件引用的css修改后刷新不生效问题

问题 在对 JavaWeb 项目修改的过程中,发现修改了 jsp 文件引入的 css 文件的代码后页面的样式没有更新的问题。 原因 导致这个问题的原因可能是因为浏览器缓存的问题。 解决方法 下面介绍两种解决方法,供大家参考: 1、给 link 标签的 c…

件夹和文件比较软件VisualDiffer mac功能介绍

VisualDiffer mac是一款运行在MacOS上的文件夹和文件快速比较工具。VisualDiffer可以对不同文件夹中文件或文档做出比较或者比较两个文件的路径。还可以通过UNIS diff命令快速、标准和可靠的比较出各类不同的文件夹和文件结果,使用不同的颜色直观地显示。 VisualDif…

网络基础(五):网络层协议介绍

目录 一、网络层 1、网络层的概念 2、网络层功能 3、IP数据包格式 二、ICMP协议 1、ICMP的作用和功能 2、ping命令的使用 2.1ping命令的通用格式 2.2ping命令的常用参数 2.3TypeCode:查看不同功能的ICMP报文 2.4ping出现问题 3、Tracert 4、冲突域 5、…

GoLong的学习之路,进阶,微服务之序列化协议,Protocol Buffers V3

这章是接上一章,使用RPC包,序列化中没有详细去讲,因为这一块需要看的和学习的地方很多。并且这一块是RPC中可以说是最重要的一块,也是性能的重要影响因子。今天这篇主要会讲其使用方式。 文章目录 Protocol Buffers V3 背景以及概…

安装ThingBox Eclipse Plugin

1. ChatGPT问 The latest version of the ThingBox Eclipse Plugin requires Eclipse IDE 2021-06 or later. 2. PTC官网下载 MED-61378-CD-092_F000_Eclipse-Plugin-9-0-1.zip文件, 和 MED-61098-CD-085_F000_ThingWorx-Extension-SDK-8-5-0(需要账号&#xff09…

深入理解模板引擎:解锁 Web 开发的新境界(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…