PyTorch: 基于【MobileNet V2】处理MNIST数据集的图像分类任务【准确率99%+】

目录

  • 引言
  • 1. 安装PyTorch
  • 2. 下载并加载MNIST数据集
  • 3. 搭建基于MobileNet V2的图像分类模型
    • 运行结果(重点看网络开头和结束位置即可)
  • 4. 设置超参数、损失函数、优化器
  • 5. 训练模型
  • 6. 测试模型
    • 运行结果
  • 完整代码
  • 结束语

引言

在深度学习和计算机视觉的世界里,MNIST数据集就像一颗璀璨的明珠,被广大研究者们珍视并广泛使用。这个数据集包含了大量的手写数字图像,为图像分类任务提供了丰富的素材。今天,我们将带您一同探索如何利用轻量级的深度神经网络MobileNet V2来处理MNIST数据集的图像分类任务。

MobileNet V2,正如其名,是MobileNet的第二代版本,它继承了MobileNet的轻量级和高效性能,同时进一步优化了结构和训练方法,使其在图像分类任务中表现得更为出色。

我们将通过详细的步骤,向您展示如何使用PyTorch实现这一任务。PyTorch是一个流行的深度学习框架,它提供了简洁易用的API和强大的计算能力,使得深度学习变得更加容易和高效。

在我们的示例代码中,我们将提供详细的注释,帮助您更好地理解每一步的操作和原理。我们希望通过这种方式,不仅让您学会如何使用MobileNet V2处理MNIST数据集的图像分类任务,更让您深入了解深度学习的原理和实现过程。

1. 安装PyTorch

# CUDA 11.6
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
# CUDA 11.3
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# CUDA 10.2
pip install torch==1.12.1+cu102 torchvision==0.13.1+cu102 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102
# CPU only
pip install torch==1.12.1+cpu torchvision==0.13.1+cpu torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cpu

2. 下载并加载MNIST数据集

import torch  
import torchvision  
import torchvision.transforms as transforms  # 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)), # 将图像resize成224×224transforms.ToTensor(), # 将像素值缩放到0-1之间,并转换为Tensortransforms.Normalize((0.5,), (0.5,))]) # 标准化# 自动下载MNIST数据集并进行数据集【封装】  
trainset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True)  
testset = torchvision.datasets.MNIST(root='./data', train=False, transform=transform, download=True)  # 设置训练集数据加载器和测试集数据加载器
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)  
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)

3. 搭建基于MobileNet V2的图像分类模型

import torch.nn as nn# 加载预训练的MobilNet V2模型
model = mobilenet_v2(pretrained=True)
print("修改网络结构前:\n", model)# 修改第一层,以满足MNIST数据集输入单通道的要求
model.features[0][0] = nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# 修改最后一层,以满足MNIST数据集的10个类别的要求
model.classifier[-1] = nn.Linear(1280, 10)
print("修改网络结构后:\n", model)

运行结果(重点看网络开头和结束位置即可)

修改网络结构前:MobileNetV2((features): Sequential((0): ConvBNReLU((0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)(2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(3): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(4): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(5): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(6): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(7): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(8): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(9): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(10): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(11): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(12): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(13): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(14): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(15): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(16): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(17): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(18): ConvBNReLU((0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True)))(classifier): Sequential((0): Dropout(p=0.2, inplace=False)(1): Linear(in_features=1280, out_features=1000, bias=True))
)
修改网络结构后:MobileNetV2((features): Sequential((0): ConvBNReLU((0): Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)(2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(3): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(4): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(5): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(6): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(7): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(8): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(9): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(10): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(11): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(12): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(13): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(14): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(15): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(16): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(17): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(18): ConvBNReLU((0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True)))(classifier): Sequential((0): Dropout(p=0.2, inplace=False)(1): Linear(in_features=1280, out_features=10, bias=True))
)

4. 设置超参数、损失函数、优化器

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 判断是否使用GPU进行训练,如果有GPU则使用GPU进行训练,否则使用CPU。
criterion = nn.CrossEntropyLoss()  # 定义损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)  # 定义优化器num_epochs = 20  # 定义训练轮数
running_loss = 0.0  # 累计损失函数值
model.to(device)  # 将模型移动到指定设备上

5. 训练模型

# 开始模型训练循环
for epoch in range(num_epochs):  # 遍历整个数据集多次for i, (inputs, labels) in enumerate(trainloader):  # 获取输入数据和标签inputs, labels = inputs.to(device), labels.to(device)  # 将数据移动到GPU上optimizer.zero_grad()  # 清空之前梯度缓存outputs = model(inputs)  # 前向传播,得到预测结果loss = criterion(outputs, labels)  # 计算损失函数值loss.backward()  # 反向传播,计算梯度值optimizer.step()  # 更新模型参数running_loss += loss.item()  # 累计损失函数值if epoch % 10 == 0:  # 每10个epoch打印一次训练信息print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, running_loss / len(trainloader)))

6. 测试模型

correct = 0  # 定义准确率变量
total = 0  # 定义总样本数变量# 开始模型测试循环
with torch.no_grad():  # 不需要计算梯度,也不需要更新模型参数for inputs, labels in testloader:  # 获取输入数据和标签inputs, labels = inputs.to(device), labels.to(device)  # 将数据移动到指定设备上outputs = model(inputs)  # 前向传播,得到预测结果_, predicted = torch.max(outputs.data, 1)  # 获取最大概率的类别作为预测结果total += labels.size(0)  # 增加总样本数correct += (predicted == labels).sum().item()  # 统计预测正确的样本数print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

运行结果

在这里插入图片描述

完整代码

import osos.environ['CUDA_VISIBLE_DEVICES'] = '0'import torch
from torchvision import datasets, transforms
from torchvision.models import mobilenet_v2
import torch.nn as nn# 数据预处理,将像素值缩放到0-1之间,转换为Tensor
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])# 加载训练数据集
trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)# 加载测试数据集
testset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 判断是否使用GPU进行训练,如果有GPU则使用GPU进行训练,否则使用CPU。# 加载预训练的MobilNet V2模型
model = mobilenet_v2(pretrained=True)
print("修改网络结构前:\n", model)# 修改第一层,以满足MNIST数据集输入单通道的要
# 求
model.features[0][0] = nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# 修改最后一层,以满足MNIST数据集的10个类别的要求
model.classifier[-1] = nn.Linear(1280, 10)
print("修改网络结构后:\n", model)criterion = nn.CrossEntropyLoss()  # 定义损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)  # 定义优化器num_epochs = 20  # 定义训练轮数
running_loss = 0.0  # 累计损失函数值model.to(device)  # 将模型移动到指定设备上# 开始模型训练循环
for epoch in range(num_epochs):  # 遍历整个数据集多次for i, (inputs, labels) in enumerate(trainloader):  # 获取输入数据和标签inputs, labels = inputs.to(device), labels.to(device)  # 将数据移动到GPU上optimizer.zero_grad()  # 清空之前梯度缓存outputs = model(inputs)  # 前向传播,得到预测结果loss = criterion(outputs, labels)  # 计算损失函数值loss.backward()  # 反向传播,计算梯度值optimizer.step()  # 更新模型参数running_loss += loss.item()  # 累计损失函数值if epoch % 10 == 0:  # 每10个epoch打印一次训练信息print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, running_loss / len(trainloader)))correct = 0  # 定义准确率变量
total = 0  # 定义总样本数变量# 开始模型测试循环
with torch.no_grad():  # 不需要计算梯度,也不需要更新模型参数for inputs, labels in testloader:  # 获取输入数据和标签inputs, labels = inputs.to(device), labels.to(device)  # 将数据移动到指定设备上outputs = model(inputs)  # 前向传播,得到预测结果_, predicted = torch.max(outputs.data, 1)  # 获取最大概率的类别作为预测结果total += labels.size(0)  # 增加总样本数correct += (predicted == labels).sum().item()  # 统计预测正确的样本数print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

结束语

  • 亲爱的读者,感谢您花时间阅读我们的博客。我们非常重视您的反馈和意见,因此在这里鼓励您对我们的博客进行评论。
  • 您的建议和看法对我们来说非常重要,这有助于我们更好地了解您的需求,并提供更高质量的内容和服务。
  • 无论您是喜欢我们的博客还是对其有任何疑问或建议,我们都非常期待您的留言。让我们一起互动,共同进步!谢谢您的支持和参与!
  • 我会坚持不懈地创作,并持续优化博文质量,为您提供更好的阅读体验。
  • 谢谢您的阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/269640.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(第32天)RHEL 7 安装 Oracle 12CR2 RAC 数据库

前言 Oracle 12CR2 版本是 12.2.0.1 版本,是 12C 家族中最早的比较稳定的版本,在 19C 没出来之前,很多人选择 12CR2 作为稳定版本进行安装。目前 19C 长期稳定版已经出来,Oracle 对于 12CR2 版本的支持周期也止步于 2022 年,应该很少会有人再选择 12CR2,除非应用上不支持…

【Hadoop_04】HDFS的API操作与读写流程

1、HDFS的API操作1.1 客户端环境准备1.2 API创建文件夹1.3 API上传1.4 API参数的优先级1.5 API文件夹下载1.6 API文件删除1.7 API文件更名和移动1.8 API文件详情和查看1.9 API文件和文件夹判断 2、HDFS的读写流程(面试重点)2.1 HDFS写数据流程2.2 网络拓…

数据结构-05-跳表SkipList

1-什么是跳表 跳表SkipList是一种随机化的数据结构,基于并联的链表,实现简单,插入、删除、查找的复杂度均为 O(logN)(大多数情况下,因为是实现上是概率问题),因为其性能匹敌红黑树且实现较为简单…

Layui深入

1、代码&#xff1a; <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>注册页面</title> <style> .container { max-width: 600px; margin: 0 auto; padding: 20px; …

Ubuntu20.04降低linux版本到5.4.0-26-generic

前言 试用ubuntu20.04安装昇腾的驱动和cann的时&#xff0c;出现如下问题&#xff1a; (base) rootubuntu:/home/work# ./Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run --full Verifying archive integrity... 100% SHA256 checksums are OK. All good. Uncompr…

时序分解 | Matlab实现SSA-ICEEMDAN麻雀算法优化ICEEMDAN时间序列信号分解

时序分解 | Matlab实现SSA-ICEEMDAN麻雀算法优化ICEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现SSA-ICEEMDAN麻雀算法优化ICEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现SSA-ICEEMDAN麻雀算法优化ICEEMDAN时间序列信号分解 可…

java版Spring Cloud+Spring Boot+Mybatis之隐私计算 FATE - 多分类神经网络算法测试

一、说明 本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练&#xff0c;并使用该模型对数据进行 多分类预测。 二分类算法&#xff1a;是指待预测的 label 标签的取值只有两种&#xff1b;直白来讲就是每个实例的可能类别只有两种 (0 或者 1)&…

数据挖掘目标(客户价值分析)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as snsIn [2]: datapd.read_csv(r../教师文件/air_data.csv)In [3]: data.head()Out[3]: Start_timeEnd_timeFareCityAgeFlight_countAvg_discountFlight_mileage02011/08/182014/0…

打工人副业变现秘籍,某多/某手变现底层引擎-Stable Diffusion替换背景

在Stable Diffusion软件中,使用ControlNet+模型实现固定物体批量替换背景 出图的流程。 一、准备好图片 1.你需要准备好一些白底图或者透明底图用于训练模型。 2.你需要准备同样角度的其他背景色底图用于ControlNet勾线 3.注意检查你的图片尺寸,是否为1:1,…

【STM32】DMA直接存储器存取

1 DMA简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 可以直接访问STM32的存储器的&#xff0c;包括运行SRAM、程序存储器Flash和寄存器等等 DMA可以提供外设寄存器和存储器或者存储器和存储器之间的高速数据传输&#xff0c;无须CPU干预&#xff0c;节…

vue 集成行政区域选择插件region和数据回显

故事&#xff1a;最近&#xff0c;项目需要进行行政区域围栏的绘制&#xff0c;由于老旧项目是利用js保存全国行政区域地址和编码&#xff0c;在选择器select进行匹配显示&#xff0c;但此方法复杂&#xff0c;因此选择集成区域插件region 步骤一&#xff1a;用命令安装region…

梳理一下嵌入式和单片机之间的关系

一定有很多人都听说过嵌入式和单片机&#xff0c;但在刚开始接触时&#xff0c;不知道大家有没有听说过嵌入式就是单片机这样的说法&#xff0c;其实嵌入式和单片机还是有区别的。单片机与嵌入式到底有什么关系&#xff1f; 下面我们就来说说嵌入式和单片机之间的联系和区别吧…