【Matlab】如何将二阶线性微分方程进行Laplace变换得到传递函数

二阶线性微分方程进行Laplace变换

  • 前言
  • 正文
  • 代码实现

前言

二阶线性微分方程:
一个二阶线性微分方程通常可以写成如下形式:
y ′ ′ ( t ) + p ( t ) y ′ ( t ) + q ( t ) y ( t ) = f ( t ) y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=f(t) y′′(t)+p(t)y(t)+q(t)y(t)=f(t)

其中, y ( t ) y(t) y(t) 是未知函数, y ′ ( t ) y^{\prime}(t) y(t) y ′ ′ ( t ) y^{\prime \prime}(t) y′′(t) 分别是它的一阶和二阶导数。 p ( t ) 、 q ( t ) p(t) 、 q(t) p(t)q(t) f ( t ) f(t) f(t) 是给定的函数,它们分别表示一阶导数的系数、二阶导数的系数和非齐次项。这是一个线性微分方程,因为未知函数及其导数的次数最高为 1 。

解决这种微分方程的目标是找到一个函数 y ( t ) y(t) y(t) 满足方程,并且满足一些初值或边界条件。

传递函数:
传递函数是一个表示线性时不变系统输入和输出关系的数学表达式。对于一个线性时不变系统,输入信号 u ( t ) u(t) u(t) 和输出信号 y ( t ) y(t) y(t) 之间的关系可以通过传递函数 H ( s ) H(s) H(s) 描述,其中 s s s 是复变量。传递函数通常表示为:
H ( s ) = Y ( s ) U ( s ) H(s)=\frac{Y(s)}{U(s)} H(s)=U(s)Y(s)

其中, Y ( s ) Y(s) Y(s) 是输出信号的 Laplace 变换, U ( s ) U(s) U(s) 是输入信号的 Laplace 变换。传递函数描述了系统对不同频率的输入信号的响应。

在频域中,传递函数可以分解为幅度和相位。这使得传递函数成为分析和设计线性时不变系统的有力工具。

在控制工程和信号处理领域,传递函数通常用于分析系统的稳定性、响应特性以及进行控制器设计。
在这里插入图片描述

正文

对于给定的二阶微分方程:
y ′ ′ ( t ) + ( 1 + t 2 ) y ′ ( t ) + e t y ( t ) = sin ⁡ ( t ) y^{\prime \prime}(t)+\left(1+t^2\right) y^{\prime}(t)+e^t y(t)=\sin (t) y′′(t)+(1+t2)y(t)+ety(t)=sin(t)
将二阶线性微分方程转化为传递函数通常需要进行 Laplace 变换。假设输入信号是 u ( t ) u(t) u(t) ,输出信号是 y ( t ) y(t) y(t) ,二阶微分方程可以表示为:
y ′ ′ ( t ) + ( 1 + t 2 ) y ′ ( t ) + e t y ( t ) = sin ⁡ ( t ) y^{\prime \prime}(t)+\left(1+t^2\right) y^{\prime}(t)+e^t y(t)=\sin (t) y′′(t)+(1+t2)y(t)+ety(t)=sin(t)

首先,我们对整个方程进行 Laplace 变换:
L { y ′ ′ ( t ) } + ( 1 + t 2 ) L { y ′ ( t ) } + e t L { y ( t ) } = L { sin ⁡ ( t ) } \mathcal{L}\left\{y^{\prime \prime}(t)\right\}+\left(1+t^2\right) \mathcal{L}\left\{y^{\prime}(t)\right\}+e^t \mathcal{L}\{y(t)\}=\mathcal{L}\{\sin (t)\} L{y′′(t)}+(1+t2)L{y(t)}+etL{y(t)}=L{sin(t)}

在 Laplace 变换中,导数的变换规则为:
L { y ′ ( t ) } = s Y ( s ) − y ( 0 ) L { y ′ ′ ( t ) } = s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) \begin{aligned} & \mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-y(0) \\ & \mathcal{L}\left\{y^{\prime \prime}(t)\right\}=s^2 Y(s)-s y(0)-y^{\prime}(0) \end{aligned} L{y(t)}=sY(s)y(0)L{y′′(t)}=s2Y(s)sy(0)y(0)

其中, Y ( s ) Y(s) Y(s) 是输出信号 y ( t ) y(t) y(t) 的 Laplace 变换。
代入这些变换,我们得到:
s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) + ( 1 + t 2 ) ( s Y ( s ) − y ( 0 ) ) + e t Y ( s ) = 1 s 2 + 1 s^2 Y(s)-s y(0)-y^{\prime}(0)+\left(1+t^2\right)(s Y(s)-y(0))+e^t Y(s)=\frac{1}{s^2+1} s2Y(s)sy(0)y(0)+(1+t2)(sY(s)y(0))+etY(s)=s2+11

整理上述方程,得到传递函数的形式:
Y ( s ) U ( s ) = 1 s 2 + 1 + ( 1 + t 2 ) s + e t \frac{Y(s)}{U(s)}=\frac{1}{s^2+1+\left(1+t^2\right) s+e^t} U(s)Y(s)=s2+1+(1+t2)s+et1

其中, U ( s ) U(s) U(s) 是输入信号 u ( t ) u(t) u(t) 的 Laplace 变换。

因此,通过 Laplace 变换,得到传递函数:
H ( s ) = Y ( s ) U ( s ) = 1 s 2 + 1 + ( 1 + t 2 ) s + e t H(s)=\frac{Y(s)}{U(s)}=\frac{1}{s^2+1+\left(1+t^2\right) s+e^t} H(s)=U(s)Y(s)=s2+1+(1+t2)s+et1

这里 Y ( s ) Y(s) Y(s) 是输出信号 y ( t ) y(t) y(t) 的 Laplace 变换, U ( s ) U(s) U(s) 是输入信号 u ( t ) u(t) u(t) 的 Laplace 变换。

由于涉及到非常数的系数 t t t ,所以传递函数也包含 t t t 。在 MATLAB 中,通过 'ilaplace’函数进行逆变换,可以得到一个包含 t t t 的表达式。

上述 MATLAB 代码示例中,使用 'ilaplace - 函数逆变换,得到的传递函数 H ( t ) H(t) H(t) 将包含 t t t ,具体的表达式将在 MATLAB 中显示。因此,您可以运行上述代码,查看输出结果。

代码实现

syms s t% 定义 Laplace 变换
Y = laplace('D2y + (1 + t^2)*Dy + exp(t)*y - sin(t)', t, s);% 逆变换得到传递函数
H = ilaplace(1 / (s^2 + 1 + (1 + t^2)*s + exp(t)), s, t);% 显示传递函数
disp('传递函数:');
disp(H);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/269738.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

十三、YARN资源分配调用

1、为什么要先学习YARN组件? 在Hadoop文件系统中,YARN作为Hadoop系统的第三大组件,其中,第二大组件MapReduce组件是基于YARN运行的,即没有YARN无法运行MapReduce程序,所以需要同时学习YARN。 2、YARN &…

基于SSM的实验室排课系统

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

《地理信息系统原理》笔记/期末复习资料(10. 空间数据挖掘与空间决策支持系统)

目录 10. 空间数据挖掘与空间决策支持系统 10.1. 空间数据挖掘 10.1.1. 空间数据挖掘的概念 10.1.2. 空间数据挖掘的方法与过程 10.1.3. 空间数据挖掘的应用 10.2. 空间决策支持系统 10.2.1. 空间决策支持系统的概念 10.2.2. 空间决策支持系统的结构 10.2.3. 空间决策…

Python 小程序之PDF文档加解密

PDF文档的加密和解密 文章目录 PDF文档的加密和解密前言一、总体构思二、使用到的库三、PDF文档的加密1.用户输入模块2.打开并读取文档数据3.遍历保存数据到新文档4.新文档进行加密5.新文档命名生成路径6.保存新加密的文档 四、PDF文档的解密1.用户输入模块2.前提准备2.文件解密…

【MySQL】MySQL数据库基础--什么是数据库/基本使用/MySQL架构/存储引擎

文章目录 1.什么是数据库2.主流数据库3.基本使用3.1MySQL安装3.2连接服务器3.3服务器管理3.4服务器,数据库,表关系3.5使用案例3.6数据逻辑存储 4.MySQL架构5.SQL分类6.存储引擎6.1什么是存储引擎6.2查看存储引擎6.3存储引擎对比 1.什么是数据库 对于回答…

【初阶C++】前言

C前言 1. 什么是C2. C发展史3. C的重要性4. 如何学习C 1. 什么是C C语言是结构化和模块化的语言,适合处理较小规模的程序。对于复杂的问题,规模较大的程序,需要高度的抽象和建模时,C语言则不合适。为了解决软件危机, …

GoLang EASY 微服务游戏框架 01

1 Overview EASY 是一个go语言编写的框架,兼容性支持go版本1.19,go mod 方式构建管理。它是一个轻型,灵活,自定义适配强的微服务框架。 它支持多种网络协议TCP,websocket,UDP(待完成&#xf…

基于51单片机的语音识别控制系统

0-演示视频 1-功能说明 (1)使用DHT11检测温湿度,然后用LCD12864显示,语音播放,使用STC11l08xe控制LD3320做语音识别, (2)上电时语音提示:欢迎使用声音识别系统&#xf…

折点计数 C语言xdoj46

问题描述 给定n个整数表示一个商店连续n天的销售量。如果某天之前销售量在增长,而后一天销售量减少,则称这一天为折点,反过来如果之前销售量减少而后一天销售量增长,也称这一天为折点,其他的天都不是折点。如图…

启动hadoop集群,发现只有一个namenode,子节点的namenode未启动

问题描述 搭建好hadoop集群,然后启动hadoop集群后,发现只有一个datanode,正常应该是3个。 原因分析: 在配置hadoop时,没有设置hadoop的工作节点文件workers,所以默认是localhost。 解决方案:…

maui 调用文心一言开发的聊天APP 3

主要是对代码进行了优化 上一个版本写死了帐号跟密码 ,这一个帐本有户可以直接设置对相关的key以及secret如果设置错时,在聊天中也会返回提示。注册帐号时同时也设置了key及secrete升级到了net.8.0导出APK,上一个版本是导出abb.解决了变型问…

【深度学习】强化学习(六)基于值函数的学习方法

文章目录 一、强化学习问题1、交互的对象2、强化学习的基本要素3、策略(Policy)4、马尔可夫决策过程5、强化学习的目标函数6、值函数7、深度强化学习 二、基于值函数的学习方法 一、强化学习问题 强化学习的基本任务是通过智能体与环境的交互学习一个策略…