作者推荐
【动态规划】【广度优先搜索】LeetCode:2617 网格图中最少访问的格子数
本文涉及的知识点
单调栈 区间合并
题目
给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。
示例 1:
输入:matrix = [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”],[“1”,“0”,“0”,“1”,“0”]]
输出:6
解释:最大矩形如上图所示。
示例 2:
输入:matrix = [[“0”]]
输出:0
示例 3:
输入:matrix = [[“1”]]
输出:1
参数范围:
rows == matrix.length
cols == matrix[0].length
1 <= row, cols <= 200
matrix[i][j] 为 ‘0’ 或 ‘1’
分析
时间复杂度O(n2m)。枚举矩形的left和right,时间复杂度o(n^2)。指定left,right,计算连续1的数量大于等于width的行数,时间复杂度O(m)。
代码
核心代码
class Solution {
public:int maximalRectangle(vector<vector<char>>& matrix) {m_r = matrix.size();m_c = matrix.front().size();vector<vector<int>> vRightLen(m_r, vector<int>(m_c));for (int r = 0; r < m_r; r++){for (int c = m_c - 1; c >= 0; c--){if ('1' == matrix[r][c]){vRightLen[r][c] = 1 + ((m_c - 1 == c) ? 0 : vRightLen[r][c + 1]);}}}int iRet = 0;for (int left = 0; left < m_c; left++){for (int right = left; right < m_c; right++){const int width = right - left + 1;int height = 0;for (int r = 0; r < m_r; r++){if (vRightLen[r][left] < width){iRet = max(iRet, height * width);height = 0;}else{height++;}}iRet = max(iRet, height * width);}}return iRet;}int m_r, m_c;
};
测试用例
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){assert(v1[i] == v2[i]);}
}template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}int main()
{vector<vector<char>> matrix;int r;{Solution slu; matrix = { {'1','0','1','0','0'},{'1','0','1','1','1'},{'1','1','1','1','1'},{'1','0','0','1','0'} };auto res = slu.maximalRectangle(matrix);Assert(6, res);}{Solution slu;matrix = { {'0'} };auto res = slu.maximalRectangle(matrix);Assert(0, res);}{Solution slu;matrix = { {'1'} };auto res = slu.maximalRectangle(matrix);Assert(1, res);}{Solution slu;matrix = { {'1','1'}};auto res = slu.maximalRectangle(matrix);Assert(2, res);}{Solution slu;matrix = { {'1'},{'1' } };auto res = slu.maximalRectangle(matrix);Assert(2, res);}
}
单调栈
枚举底部,本题就可以转化成柱形图的最大矩形
class Solution {
public:int maximalRectangle(vector<vector<char>>& matrix) { m_c = matrix.front().size();vector<int> vHeights(m_c);int iRet = 0;for (int r = 0; r < matrix.size(); r++){for (int c = m_c - 1; c >= 0; c--){if ('1' == matrix[r][c]){vHeights[c] +=1 ;}else{vHeights[c] = 0 ;}}iRet = max(iRet, largestRectangleArea(vHeights));}return iRet;}int largestRectangleArea(vector<int>& heights) {m_c = heights.size();vector<pair<int, int>> vLeftHeightIndex;vector<int> vLeftFirstLess(m_c, -1), vRightFirstMoreEqual(m_c, m_c);//别忘记初始化for (int i = 0; i < m_c; i++){while (vLeftHeightIndex.size() && (heights[i] <= vLeftHeightIndex.back().first)){vRightFirstMoreEqual[vLeftHeightIndex.back().second] = i;vLeftHeightIndex.pop_back();}if (vLeftHeightIndex.size()){vLeftFirstLess[i] = vLeftHeightIndex.back().second;}vLeftHeightIndex.emplace_back(heights[i], i);}int iRet = 0;for (int i = 0; i < m_c; i++){iRet = max(iRet, heights[i] * (vRightFirstMoreEqual[i] - vLeftFirstLess[i] - 1));}return iRet;}int m_c;
};
2022年12月版代码
class Solution {public:int maximalRectangle(vector<vector<char>>& matrix) {m_r = matrix.size();m_c = matrix[0].size();vector<vector<int>> leftNums;leftNums.assign(m_r, vector<int>(m_c));for (int r = 0; r < m_r; r++){for (int c = 0; c < m_c; c++){if ('0' == matrix[r][c]){leftNums[r][c] = 0;}else{leftNums[r][c] = 1 + ((c > 0) ? leftNums[r][c - 1] : 0);}}}for (int c = 0; c < m_c; c++){stack<pair<int, int>> sta; for (int r = 0; r < m_r; r++){int iMinR = r;while (sta.size() && (sta.top().first > leftNums[r][c])){PopStack(sta, iMinR, r);}if (sta.empty() || (sta.top().first < leftNums[r][c])){sta.emplace(leftNums[r][c], iMinR);}}while (sta.size()){int iMinR = m_r;PopStack(sta, iMinR, m_r);}}return m_iMaxArea;}void PopStack(stack<pair<int, int>>& sta,int& iMinRow,int r ){int iWidth = sta.top().first;iMinRow = sta.top().second;sta.pop();m_iMaxArea = max(m_iMaxArea, iWidth*(r - 1 - iMinRow + 1));}int m_r, m_c;int m_iMaxArea = 0;};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
| 我想对大家说的话 ||-|
|闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。|
| 子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
|如果程序是一条龙,那算法就是他的是睛|
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。