【经典LeetCode算法题目专栏分类】【第2期】组合与排列问题系列

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

组合总和1

class Solution:

    def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:

        def DFS(candidates,target,start,track):

            if sum(track) == target:

                res.append(track.copy())

                return

            if sum(track) > target:

                return

            for i in range(start,len(candidates)):

                track.append(candidates[i])

                DFS(candidates,target, i, track)

                track.pop()

        res =[]

        DFS(candidates,target,0,[])

        return res

元素可以重复使用,进入下一层时从i开始。元素不能重复使用时,进入下一层时从i+1卡开始。

组合总和2

class Solution:

    def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:

        def DFS(candidates, target,start, track):

            if sum(track) > target:

                return 

            if sum(track) == target:

                res.append(track.copy())

            for i in range(start,len(candidates)):

# 忽略掉同一层中重复的选项,上述for循环为本层的可选择列表

                if i - 1 >= start and candidates[i-1] == candidates[i]:

                    continue

                track.append(candidates[i])

                DFS(candidates, target,i+1,track)

                track.pop()

        res = []

        candidates.sort()

        DFS(candidates,target,0,[])

        return res

注:当题目中说明所给序列可能包含重复的组合或者子集时,解题套路是要先对原数组进行排序,并且在回溯的写法中,要加上对重复元素跳过的判断,即:

# if(i>startIndex)

# {

    # if(candidates[i]==candidates[i-1])

        # continue;

# }

# 其它的写题做法和回溯是一样的,可以加上剪枝判断,回溯中也要对sum一并进行回溯。

#for 循环枚举出选项时,加入下面判断,忽略掉同一层重复的选项,避免产生重复的组合。比如[1,2,2,2,5]中,选了第一个 2,变成 [1,2],第一个 2 的下一选项也是 2,跳过它,因为选它,就还是 [1,2]

关键总结:

  1. 如果元素可以重复使用,进入下一层时从i开始。元素不能重复使用时,进入下一层时从i+1开始。
  2. 当题目中说明所给序列可能包含重复的组合或者子集时,解题套路是要先对原数组进行排序,并且在回溯的写法中,要加上对重复元素跳过的判断

全排列1

class Solution:

    def permute(self, nums: List[int]) -> List[List[int]]:

        def backtrack(nums, track):

            if len(nums) == len(track):

                res.append(track.copy())

                return

            for i in nums:

                # 排除不合法的选择,即不能选择已经在track中的元素

                if i in track:

                    continue

                track.append(i)

                backtrack(nums, track)

                track.pop()

        res = []

        backtrack(nums,[])

        return res

全排列问题1与组合问题1的主要差别在于:

1.是否需要使用start参数来进行下一层开始选择元素的标识。

2.全排列问题,需要if i in track: continue,剔除上次选择的元素。

全排列2

class Solution:

    def permuteUnique(self, nums: List[int]) -> List[List[int]]:

        def DFS(nums,track,used):

            if len(track) == len(nums):

                res.append(track.copy())

                return

            for i in range(len(nums)):    #https://leetcode-cn.com/problems/permutations-ii/solution/47-quan-pai-lie-iiche-di-li-jie-pai-lie-zhong-de-q/

                #这里理解used[i - 1]非常重要

            # // used[i - 1] == true,说明同一树枝上nums[i - 1]使用过,在同一个递归栈内,试用过的都是Ture

            # // used[i - 1] == false,说明同一树层nums[i - 1]使用过,因为回溯会使上一个元素重新变为False

            # // 如果同一树层nums[i - 1]使用过则直接跳过

                if i > 0 and nums[i] == nums[i-1] and used[i-1] == False:

                    continue

                if used[i] == False:

                    used[i] = True

                    track.append(nums[i])

                    DFS(nums,track,used)

                    track.pop()

                    used[i] = False

        res = []

        nums.sort()

        used = [False for i in range(len(nums))]

        DFS(nums,[],used)

        return res

注:上述组合总和2与全排列2,去重的条件有一点点差别,主要原因是排列的话需要考虑前后位置差异,而组合的话不需要考虑位置差异。

组合的去重条件:

# 忽略掉同一层中重复的选项,上述for循环为本层的可选择列表

if i - 1 >= start and candidates[i-1] == candidates[i]:

排列的去重条件:

if i > 0 and nums[i] == nums[i-1] and used[i-1] == False:

彻底理解排列中的去重问题】详解

思路

这道题目和46.全排列的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。

这里就涉及到去重了。

要注意全排列是要取树的叶子节点的,如果是子集问题,就取树上的所有节点。

这个去重为什么很难理解呢,所谓去重,其实就是使用过的元素不能重复选取 这么一说好像很简单!

但是什么又是“使用过”,我们把排列问题抽象为树形结构之后,“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。

没有理解这两个层面上的“使用过” 是造成大家没有彻底理解去重的根本原因。

那么排列问题,既可以在 同一树层上的“使用过”来去重,也可以在同一树枝上的“使用过”来去重!

理解这一本质,很多疑点就迎刃而解了。

还要强调的是去重一定要对元素经行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

首先把示例中的 [1,1,2] (为了方便举例,已经排序),抽象为一棵树,然后在同一树层上对nums[i-1]使用过的话,进行去重如图:

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

拓展

大家发现,去重最为关键的代码为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {

    continue;

}

可是如果把 used[i - 1] == true 也是正确的,去重代码如下:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {

    continue;

}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用用used[i - 1] == true。

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

树枝上去重(used[i - 1] == true)的树型结构如下:

大家应该很清晰的看到,树层上去重非常彻底,效率很高,树枝上去重虽然最后可能得到答案,但是多做了很多无用搜索。

子集(组合问题

class Solution:

    def subsets(self, nums: List[int]) -> List[List[int]]:

        def backtrack(nums, track, start):

            res.append(track.copy())

            if start >= len(nums):

                return 

            for i in range(start, len(nums)):

                track.append(nums[i])

                backtrack(nums, track, i + 1)

                track.pop()

        res = []

        backtrack(nums, [], 0)

        return res

子集2(组合问题)

class Solution:

    def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:

        def backtrack(nums, start, track):

            res.append(track.copy())

            for i in range(start, len(nums)):

                if i-1>=start and nums[i]==nums[i-1]: # 同层去重

                    continue

                track.append(nums[i])

                backtrack(nums,i+1,track)

                track.pop()

        res= []

        nums.sort()

        backtrack(nums,0,[])

        return res

字符串排列排列问题且涉及去重

原始字符串可能存在重复字符’aab’---‘aba’,’baa’

class Solution:

    def permutation(self, s: str) -> List[str]:

        def backtrack(s, cur_s):

            if len(cur_s) == len(s):

                res.append(cur_s)

                return

            for i in range(len(s)):

                if i > 0 and s[i] == s[i-1] and visited[i-1] == False: #同层去重

                    continue

                if visited[i] == False:

                    visited[i] = True

                    backtrack(s, cur_s + s[i])

                    visited[i] = False

        res = []

        visited = [False for _ in range(len(s))]

        s = ''.join(sorted(list(s)))

        backtrack(s,'')

        return res

写法二

class Solution:

    def permutation(self, s: str) -> List[str]:

        def backtrack(s, path):

            if not s:

                res.append(path)

            seen = set()

            for i in range(len(s)):

                if s[i] in seen: continue   # 同层去重

                seen.add(s[i])

#传递的字符串去除了当前选择的字符s[:i]+s[i+1:]

                backtrack(s[:i]+s[i+1:], path + s[i])

        res = []

        backtrack(s, "")

        return res

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

欢迎关注下方GZH:阿旭算法与机器学习,共同学习交流~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/282797.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux笔记--VSCode利用交换机跳转服务器

目录 1--前言 2--VSCode设置 3--ssh连接 1--前言 博主学校的服务器有两个,其中一个服务器(14)可以通过挂内网VPN来进行连接,但另一个服务器(15)即使挂了VPN也不能连接,只能通过内网进行连接。…

Java入门学习笔记一

一、Java语言环境搭建 1、JAVA语言的跨平台原理 1.1、什么是跨平台性? 跨平台就是说,同一个软件可以在不同的操作系统(例如:Windows、Linux、mad)上执行,而不需要对软件做任务处理。即通过Java语言编写的…

Ansible-playbook编译.yml脚本

1、playbook是什么? 在Ansible中,Playbook是用于配置、部署和管理被控节点的剧本。它由一个或多个play(角色)组成,每个play可以包含多个task(台词,动作)。使用Ansible的Playbook&am…

轻量封装WebGPU渲染系统示例<52>- Json数据描述材质、纹理等3D渲染场景信息

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/DataDrivenScene3.ts 当前示例运行效果: ​​​​​​​ Json数据: {"renderer": {"mtplEnabled": true,"camera": {"eye&quo…

再怎么“顽固”的应用程序,也很难经得住以下的卸载方法

卸载程序是我们经常尝试的事情。这可能是因为我们不再需要程序,该程序可能会导致问题等。有时,如果你试图卸载某个程序,你会收到一个错误,但卸载没有发生。在这种情况下,你可以选择强制卸载。在本教程中,我将向你展示如何在Windows 10/11计算机上强制卸载程序。 ​控制面…

人工智能中的对比学习:算法原理与应用探索

导言 对比学习作为人工智能领域中的一种重要学习范式,在模型训练和应用中展现出独特的优势。然而,随着应用范围的扩大,对比学习也面临一些挑战。本文将深入探讨对比学习的算法原理、应用场景以及其在人工智能中的前景,并提出一些可…

浏览器的事件循环机制(Event loop)

事件循环 浏览器的进程模型 何为进程? 程序运行需要有它自己专属的内存空间,可以把这块内存空间简单的理解为进程 每个应用至少有一个进程,进程之间相互独立,即使要通信,也需要双方同意。 何为线程? …

芝麻杂草目标检测数据集VOC+YOLO格式近1300张

芝麻,芝麻科芝麻属的一年生草本植物,茎中空或具白色髓部;叶子为卵形;花朵单生或少数同生于腋下,呈白色;芝麻蒴果基部钝圆,顶部有尖,中间有棱;芝麻的种子通常呈扁平椭圆形…

k8s实操

问题一 开通了vpc 但是仍然无法ping 通 需要安全组放行icmp 问题二 实际安装过程中每个节点需要提前安装 conntrack socat 更新apt apt-get update安装需要的 apt install -y conntrack && apt install -y socat一定要先删除失败的 出现这个问题有可能是没有删除…

软件设计师——数据结构(二)

📑前言 本文主要是【数据结构】——软件设计师——数据结构的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 &#x1f304…

[AutoSar]基础部分 RTE 介绍

目录 关键词平台说明一、什么是RTE二、RTE的主要功能 关键词 嵌入式、C语言、autosar、EcuM、wakeup、flex 平台说明 项目ValueOSautosar OSautosar厂商vector芯片厂商TI编程语言C,C编译器HighTec (GCC) 一、什么是RTE RTE(Run-Time Environment&…

delphi的unigui web开发中使用font awesome 字体

一、不必下载,unigui已内置该字体及调用 其实,unigui 1.90中就含有font awesome字体的模块,我们不必再从其官网下载。 当然要下载,从以下位置下载官方套件: Download Font Awesome Free or Pro | Font Awesome 选择F…