ElasticSearch学习篇8_Lucene之数据存储(Stored Field、DocValue、BKD Tree)

前言

Lucene全文检索主要分为索引、搜索两个过程,对于索引过程就是将文档磁盘存储然后按照指定格式构建索引文件,其中涉及数据存储一些压缩、数据结构设计还是很巧妙的,下面主要记录学习过程中的StoredField、DocValue以及磁盘BKD Tree的一些相关知识。

参考:

  • https://juejin.cn/post/6978437292549636132
  • https://juejin.cn/user/2559318800998141/posts
  • Lucene 原理与代码分析完整版.pdf
  • https://lucene.apache.org/core/9_9_0/core/org/apache/lucene/codecs/lucene99/package-summary.html#package.description
  • 美团外卖搜索基于 Elasticsearch 的优化实践

目录

  • Lucene数据分类
  • Lucene字段存储

1、Lucene数据分类

在Lucene中索引数据存储的逻辑层次有多个层次,从大到小依次是

  • index:索引代表了一类数据的完整存储
  • segment: 一个索引可能有一个或者多个段构成
  • doc: segment中存储的是一篇一篇的文档doc,每个segment是一个doc的集合
  • field: 每个doc都有多个field构成,filed才包含了具体的文本,类似于一个json对象的一个属性
  • term: 每个field的值可以进行分词,进而得到多个term,term是最基本的单元,每个field可以保存自己的词向量,用来计算搜索相似度

按照数据的维度整个Lucene把需要处理的数据分为这么几类

  1. PostingList,倒排表,也就是term->[doc1, doc3, doc5]这种倒排索引数据
  2. BlockTree, 从term和PostingList的映射关系,这种映射一般都用FST这种数据结构来表示,这种数据结构其实是一种树形结构,类似于Tire树,所以Lucene这里就叫BlockTree, 其实我更习惯叫它TermDict。
  3. StoredField一般类型的field原始数据存储
  4. DocValue 键值数据,这种数据主要用于数值、日期类型的field,是用来加速对字段的排序、筛选的,列式存储。
  5. TermVector词向量信息,主要记一个不同term的全局出现频率等信息,用于score,如搜索的str会被分为一个个term,然后会被转为指定维度的向量,存储文档维护索引会根据当前文档、所有文档中term出现的频率以得到一个当前term的权重创建一个对应的指定维度的向量,然后就计算查询相关性score。
  6. Norms用来存储Normalisation信息, 比如给某些field加权之类的。
  7. PointValue 用来加速 range Query的信息。

一个段索引维护的数据,Lucene9_9_0版本https://lucene.apache.org/core/9_9_0/core/org/apache/lucene/codecs/lucene99/package-summary.html#package.description

  • Segment info. This contains metadata about a segment, such as the number of documents, what files it uses, and information about how the segment is sorted。其中包含有关片段的元数据,例如文档数量、它使用的文件以及有关片段排序方式的信息
  • Field names. This contains metadata about the set of named fields used in the index.包含文档fields的元数据以及名称。
  • Stored Field values. This contains, for each document, a list of attribute-value pairs, where the attributes are field names. These are used to store auxiliary information about the document, such as its title, url, or an identifier to access a database. The set of stored fields are what is returned for each hit when searching. This is keyed by document number.以文档ID作为key,存储当前文档的fields键值对。
  • Term dictionary. A dictionary containing all of the terms used in all of the indexed fields of all of the documents. The dictionary also contains the number of documents which contain the term, and pointers to the term’s frequency and proximity data.包含所有文档的所有索引字段中使用的所有term的字典。该词典还包含包含该term的文档数量,以及指向该术语的频率和邻近数据的指针。
  • Term Frequency data. For each term in the dictionary, the numbers of all the documents that contain that term, and the frequency of the term in that document, unless frequencies are omitted (IndexOptions.DOCS)。term在当前文档出现的频率以及在全部文档出现的频率,主要用于score得分,比如term在当前文档出现的频率最高,在所有文档出现的频率最低,那么搜索该term在该文档中搜索得分高。
  • Term Proximity data. For each term in the dictionary, the positions that the term occurs in each document. Note that this will not exist if all fields in all documents omit position data。term出现在所有文档的位置,可省略。
  • Normalization factors. For each field in each document, a value is stored that is multiplied into the score for hits on that field.计算相关性score的时候可为某些field字段乘以一个系数。
  • Term Vectors. For each field in each document, the term vector (sometimes called document vector) may be stored. A term vector consists of term text and term frequency. To add Term Vectors to your index see the Field constructors。每一个文档的每一个field会有一个term向量,主要根据term出现的频率计算出来,用于搜索的score分值计算。
    • TextField: Reader or String indexed for full-text search。用于全文搜索。
    • StringField: String indexed verbatim as a single token
    • IntPoint: int indexed for exact/range queries.
    • LongPoint: long indexed for exact/range queries.
    • FloatPoint: float indexed for exact/range queries.
    • DoublePoint: double indexed for exact/range queries.
    • SortedDocValuesField: byte[] indexed column-wise for sorting/faceting,按列索引,用于排序
    • SortedSetDocValuesField: SortedSet<byte[]> indexed column-wise for sorting/faceting
    • NumericDocValuesField: long indexed column-wise for sorting/faceting
    • SortedNumericDocValuesField: SortedSet indexed column-wise for sorting/faceting
    • StoredField: Stored-only value for retrieving in summary results。仅存储值。
  • Per-document values. Like stored values, these are also keyed by document number, but are generally intended to be loaded into main memory for fast access. Whereas stored values are generally intended for summary results from searches, per-document values are useful for things like scoring factors.类似StoreField,可以更快加载到内存访问,用于搜索的摘要结果,但是每个文档的值对于评分因素有很大的影响。
  • Live documents. An optional file indicating which documents are live.一个可选文件,指定哪些文档是实时的。主要用于段数据删除时候,在段外部维护一个状态记录段的最新状态。
  • Point values. Optional pair of files, recording dimensionally indexed fields, to enable fast numeric range filtering and large numeric values like BigInteger and BigDecimal (1D) and geographic shape intersection (2D, 3D).可选的一对文件,记录维度索引字段,以启用快速数值范围过滤和大数值,例如 BigInteger 和 BigDecimal (1D) 以及地理形状交集(2D、3D)。
  • Vector values. The vector format stores numeric vectors in a format optimized for random access and computation, supporting high-dimensional nearest-neighbor search.

按照数据存储的方向维度可以分为

  • 一般存储形式:按层次保存了从索引,一直到词的包含关系:索引(Index) –> 段(segment) –> 文档 (Document) –> 域(Field) –> 词(Term) ,层次结构,则每个层次都保存了本层次的信息以及下一层次的元信息。如StoredFileld、DocValue存储形式。
  • 反向存储形式:如倒排索引(PostingList + BlockTree)数据存储形式。

2、Lucene存储文件

一个索引相关的存储文件对应一个文件夹,一个段的所有文件都具有相同的名称和不同的扩展名。扩展名对应于下面描述的不同文件格式。当使用复合文件格式时(小段的默认格式),这些文件(段信息文件、锁定文件和文件夹文档文件除外)将折叠为单个.cfs文件。

  • Segments info:多个段文件名永远不会重复使用。也就是说,当任何文件保存到目录时, 以前从未使用过的文件名。这是使用简单的生成方法实现的。比如说, 第一个段文件是segments_1,然后是segments_2,依此类推。生成是连续的长 以字母数字(以36为基数)形式表示的整数。主要保存段的元信息,segments_N 保存了此索引包含多少个段,每个段包含多少篇文档,实际的数据信息保存在field和词中的。
  • Write.lock:写锁默认存储在索引目录中,名为“write.lock”。如果锁目录与索引目录不同,则写锁将被命名为“XXXX-write.lock”,其中“”是从索引目录的完整路径导出的唯一前缀。如果存在此文件,则表示编写者正在修改索引(添加或删除文档)。这个锁文件确保一次只有一个writer修改索引。
  • Fields、Field Index 、Field Data:This is keyed by document number.也就是上面说的一般存储形式,保存了此段包含了多少个field,每个field的名称及索引方式以及数据
  • Term Vector Index、Term Vector Data:当你将字段设置为存储Term Vector时,Lucene会提取出该字段中每个词项的相关信息,并将其存储到倒排索引中。这样可以在搜索时不仅找到包含关键词的文档,还能得知每个关键词在文档中的频率和位置。因为不仅要根据倒排索引找到文档ID,还需要计算文档的相关性得分,会存储当前文档全部term的频率、位置信息,为了下一步也就是根据文档内全部的term的频率信息计算下面的vector value。
  • Vector values:根据每个文档的所有term vector data数据,为每个文档计算出一个指定的相关性vector values,然后在跟query vevtor计算相关性score。

企业微信截图_8914cb9a-4d36-4b25-b5b0-f6fcb58a9e92.png

3、Lucene数据存储

ps:学习分析Lucene版本为9_9_0

3.1、StoredField

In Lucene, fields may be stored, in which case their text is stored in the index literally, in a non-inverted manner. Fields that are inverted are called indexed. A field may be both stored and indexed.

保存字段属性信息的,过程主要关注各数据类型是如何存储的? 最终写入索引是如何压缩的?Lucene的field数据类型有下面几大类

  • int
  • long
  • Float
  • Double
  • String
  • bytes
3.1.1、int

// TODO

3.1.2、long
3.1.3、Float
3.1.4、Double
3.1.5、String
3.1.6、bytes

3.2、DocValue

用于倒排查找的数据,加速筛选和排序的,主要关注

  • DocValue 的类型有哪些?SortedNumericDocValue?SortedSet?应用场景等。
  • DocValue是如何存储的?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/282971.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

neuq-acm预备队训练week 10 P3386 【模板】二分图最大匹配

题目描述 给定一个二分图&#xff0c;其左部点的个数为 n&#xff0c;右部点的个数为 m&#xff0c;边数为 e&#xff0c;求其最大匹配的边数。 左部点从 1 至 n 编号&#xff0c;右部点从 1至 m 编号。 题目限制 输入格式 输入的第一行是三个整数&#xff0c;分别代表 n&a…

【微服务】Spring Aop原理深入解析

目录 一、前言 二、aop概述 2.1 什么是AOP 2.2 AOP中的一些概念 2.2.1 aop通知类型 2.3 AOP实现原理 2.3.1 aop中的代理实现 2.4 静态代理与动态代理 2.4.1 静态代理实现 三、 jdk动态代理与cglib代理 3.1 jdk动态代理 3.1.1 jdk代理示例 3.1.2 jdk动态代理模拟实现…

设计模式——策略模式

引言 策略模式是一种行为设计模式&#xff0c; 它能让你定义一系列算法&#xff0c; 并将每种算法分别放入独立的类中&#xff0c; 以使算法的对象能够相互替换。 问题 一天&#xff0c; 你打算为游客们创建一款导游程序。 该程序的核心功能是提供美观的地图&#xff0c; 以…

[python]用python获取EXCEL文件内容并保存到DBC

目录 关键词平台说明背景所需库实现过程方法1.1.安装相关库2.代码实现 关键词 python、excel、DBC、openpyxl 平台说明 项目Valuepython版本3.6 背景 在搭建自动化测试平台的时候经常会提取DBC文件中的信息并保存为excel或者其他文件格式&#xff0c;用于自动化测试。本文…

用GitBook制作自己的网页版电子书

用GitBook制作自己的网页版电子书 前言 几年前阅读过其他人用GitBook创建的文档&#xff0c;可以直接在浏览器中打开&#xff0c;页面干净整洁&#xff0c;非常清爽&#xff0c;至今印象深刻。 GitBook非常适合用来为个人或团队制作文档&#xff0c;对于我这种偶尔写博客的人…

【Hadoop面试】HDFS读写流程

HDFS&#xff08;Hadoop Distributed File System&#xff09;是GFS的开源实现。 HDFS架构 HDFS是一个典型的主/备&#xff08;Master/Slave&#xff09;架构的分布式系统&#xff0c;由一个名字节点Namenode(Master) 多个数据节点Datanode(Slave)组成。其中Namenode提供元数…

Java架构师系统架构内部维度分析

目录 1 导语2.1 安全性维度概述2.2 流程安全性2.3 架构安全性2.4 安全维度总结3 伸缩性维度概述和场景思路3.1 无状态应用弹性伸缩3.2 阿里云Knative弹性伸缩3.3 有状态应用弹性伸缩3.4 伸缩性维度总结想学习架构师构建流程请跳转:Java架构师系统架构设计 1 导语

DSP捕获输入简单笔记

之前使用stm32的大概原理是&#xff1a; 输入引脚输入一个脉冲&#xff0c;捕获1开始极性捕获&#xff0c;捕获的是从启动捕获功能开始计数&#xff0c;捕获的是当前的计数值&#xff1b; 例如一个脉冲&#xff0c;捕获1捕获上升沿&#xff0c;捕获2捕获下降沿&#xff1b;而两…

vue2入门

vue2官方文档&#xff1a;安装 — Vue.js 1、安装 新建"vue"文件夹——>新建vue1.html 直接用<script>标签引入vue&#xff1a; <script src"https://cdn.jsdelivr.net/npm/vue2.7.14/dist/vue.js"></script> tips: CDN:一个网络…

机器学习项目精选 第一期:超完整数据科学资料合集

大噶吼&#xff0c;不说废话&#xff0c;分享一波我最近看过并觉得非常硬核的资源&#xff0c;包括Python、机器学习、深度学习、大模型等等。 1、超完整数据科学资料合集 地址&#xff1a;https://github.com/krishnaik06/The-Grand-Complete-Data-Science-Materials Pytho…

女生想通过培训转行软件测试类可行吗?

首先&#xff0c;女生转行IT行业做软件测试是可以的&#xff0c;因为软件测试岗&#xff0c;尤其是其中的功能性测试岗&#xff0c;入行门槛并不高&#xff0c;有很多女生在做&#xff0c;且我个人认为还蛮适合女生的&#xff0c;因为女生相对来说更细心&#xff0c;文档能力也…

Linux:时间显示(函数介绍)

文章目录 1、sleep&#xff1a;延迟函数2、time/localtime3、示例&#xff1a;sleep time localtime4、Linux时间调整 1、sleep&#xff1a;延迟函数 函数原型&#xff1a;unsigned int sleep(unsigned int seconds); 功 能&#xff1a;延时 参 数&#xff1a;seconds:秒&am…