Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类

目录

引言

1 数据集制作与加载

1.1 导入数据

1.2 制作数据集

2 LSTM分类模型和超参数选取

2.1 定义LSTM分类模型

2.2 定义模型参数

3 LSTM模型训练与评估

3.1 模型训练

3.2 模型评估


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru轴承数据集-CSDN博客

Python房价分析(一)pyton爬虫-CSDN博客

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

引言

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现LSTM模型对扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

部分扰动信号类型波形图如下所示:

1 数据集制作与加载

1.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

第二步,导入十分类数据

import pandas as pd
import numpy as np# 样本时长0.2s  样本步长512  每个信号生成500个样本  噪声0DB  
window_step = 512
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1]  # 训练集、验证集、测试集划分比例# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape

1.2 制作数据集

第一步,定义制作数据集函数

第二步,制作数据集与分类标签

from joblib import dump, load
# 生成数据
train_dataframe, val_dataframe, test_dataframe = make_data(dataframe_10c, split_rate)
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_dataframe)
val_xdata, val_ylabel = make_data_labels(val_dataframe)
test_xdata, test_ylabel = make_data_labels(test_dataframe)
# 保存数据
dump(train_xdata, 'TrainX_512_0DB_10c')
dump(val_xdata, 'ValX_512_0DB_10c')
dump(test_xdata, 'TestX_512_0DB_10c')
dump(train_ylabel, 'TrainY_512_0DB_10c')
dump(val_ylabel, 'ValY_512_0DB_10c')
dump(test_ylabel, 'TestY_512_0DB_10c')

2 LSTM分类模型和超参数选取

2.1 定义LSTM分类模型

注意:输入数据进行了堆叠 ,把一个1*512 的序列 进行划分堆叠成形状为 32 * 16, 就使输入序列的长度降下来了。

2.2 定义模型参数

# 定义模型参数
batch_size = 64
input_dim = 32
hidden_layer_sizes = [64, 128]
output_dim = 10model = LSTMnetwork(batch_size, input_dim, hidden_layer_sizes, output_dim)  # 模型
model = model.to(device)
# 定义损失函数和优化函数loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3 LSTM模型训练与评估

3.1 模型训练

训练结果

300个epoch,准确率将近98%,LSTM网络分类模型效果良好,继续调参还可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 LSTM 层数和每层神经元个数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.2 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练# 加载模型
model =torch.load('best_model_lstm.pt')# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():correct_test = 0test_loss = 0for test_data, test_label in test_loader:test_data, test_label = test_data.to(device), test_label.to(device)test_output = model(test_data)probabilities = F.softmax(test_output, dim=1)predicted_labels = torch.argmax(probabilities, dim=1)correct_test += (predicted_labels == test_label).sum().item()loss = loss_function(test_output, test_label)test_loss += loss.item()test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')Test Accuracy: 0.9770  Test Loss: 0.22114271

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/283440.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Word写大论文常见问题(持续更新)

脚注横线未定格 解决方案:“视图”-“草图”,“引用”-“显示备注”-选择“脚注分隔符”,把横线前的空格删掉。 2.PPT做的图插入word中清晰度太低 解决方案:PPT-图形-“另存为图片”-“可缩放矢量图格式”-粘贴到word中。

RDD编程

目录 一、RDD编程基础 (一)RDD创建 (二)RDD操作 1、转换操作 2、行动操作 3、惰性机制 (三)持久化 (四)分区 (五)一个综合实例 二、键值对RDD &am…

社交网络分析3:社交网络隐私攻击、保护的基本概念和方法 + 去匿名化技术 + 推理攻击技术 + k-匿名 + 基于聚类的隐私保护算法

社交网络分析3:社交网络隐私攻击、保护的基本概念和方法 去匿名化技术 推理攻击技术 k-匿名 基于聚类的隐私保护算法 写在最前面社交网络隐私泄露用户数据暴露的途径复杂行为的隐私风险技术发展带来的隐私挑战经济利益与数据售卖防范措施 社交网络 用户数据隐私…

[AI工具推荐]AiRestful智能API代码生成

智能API代码示例生成工具AiRestful 一、产品介绍二、如何使用1、第一步(必须):2、第二步(可选):3、第三步(智能生成): 三、如何集成到您的网站(应用)1、开始接入2、接入案例 四、注意点 一、产品介绍 AiRestful是一款基于智能AI的,帮助小白快速生成任意编程语言的API接口调用示…

Axure元件的介绍使用以及登录界面

一、Axure元件介绍 简介: Axure元件是一种功能强大的设计工具,专门用于用户体验设计和交互设计。它可以帮助设计师创建可交互的原型,并实现各种界面元素的设计和布局。 Axure元件的基本特点包括: 多样性:Axure元件包括…

【DataSophon】大数据服务组件之Flink升级

🦄 个人主页——🎐开着拖拉机回家_Linux,大数据运维-CSDN博客 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁&am…

从 0 开始实现一个 SpringBoot + Vue 项目

从 0 开始实现一个 SpringBoot Vue 项目 从 0 开始实现一个 SpringBoot Vue 项目软件和工具创建 SpringBoot 后端项目创建 MySQL 数据库配置文件实现增删改查接口Model 层mapper 层service 层controller 层测试 从 0 开始实现一个 SpringBoot Vue 项目 软件和工具 后端开发…

一二三应用开发平台部署文档——开发环境搭建手册

背景 开源平台在ReadMe文档中简要描述了如何部署与启动以及重要注意事项,有小伙伴私信我希望提供一个详细具体的部署说明,然后联想到自己出于学习或研究目的,去搭建一些开源项目时,面对简要的说明也经常遇到障碍,比如…

MySQL | 往数据库中插入时间时,差了八个小时(时区设置)

一:问题 在往数据库中插入(读取)时间的时候,会相差八个小时,这是常见的问题,原因是因为时区设置的问题 二:知识点 UTC:Coordinated Universal Time 协调世界时。 GMT:…

AttributeError: module ‘jax‘ has no attribute ‘Array‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…

【JAVA】CyclicBarrier源码解析以及示例

文章目录 前言CyclicBarrier源码解析以及示例主要成员变量核心方法 应用场景任务分解与合并应用示例 并行计算应用示例 游戏开发应用示例输出结果 数据加载应用示例 并发工具的协同应用示例 CyclicBarrier和CountDownLatch的区别循环性:计数器的变化:用途…

I2C总线(二)注册控制器

一、i2c适配器 i2c适配器在硬件层面其实就是i2c控制器,因为跟芯片相关,一般内核会带对应厂商的芯片驱动,实现在i2c/busses中找好了。 我们直接看代码,以imx6为例。 1、平台总线匹配 imx6中是做了,驱动和设备树分离…