基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 双目视觉原理

4.2 深度信息获取

4.3 表面重建

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................................
%读取左右RGB图像和对应的深度图像以进行校准  
% 左RGB图像和对应的深度图像  
Image_L  = imread('images\Image_L.png');% 读取左RGB图像 
Dep_L    = imread('images\Dep_L.png');% 读取左深度图像  
% 右RGB图像和对应的深度图像  
Image_R  = imread('images\Image_R.png');% 读取右RGB图像 
Dep_R    = imread('images\Dep_R.png');% 读取右深度图像figure();
subplot(221);
imshow(Image_L );
title('双目左图')subplot(222);
imshow(Dep_L,[0.8,3.0]);
title('双目左图深度信息')subplot(223);
imshow(Image_R); 
title('双目右图')
subplot(224);
imshow(Dep_R,[0.8,3.0]); 
title('双目右图深度信息')%将深度图像中的所有2D点反投影到3D空间中(针对左相机)  
%左相机的2D点:
Dep_Lmap = func_2D_2_3D(Dep_L,Cdx,Cdy,Fdx,Fdy);%将深度图像中的所有2D点反投影到3D空间中(针对右相机)  
%右相机的2D点:  
Dep_Rmap = func_2D_2_3D(Dep_R,Cdx,Cdy,Fdx,Fdy);%将所有变换后的3D点投影到RGB图像上(针对左相机)  
% 左相机投影: 
[Image_Lp1,Image_Lp2] = func_3D_POINT(Image_L,Dep_L,Dep_Lmap,mat_rot,mat_tra,FLx_cam,FLy_cam,CLx_cam,CLy_cam);
% 右相机投影: 
[Image_Rp1,Image_Rp2] = func_3D_POINT(Image_R,Dep_R,Dep_Rmap,mat_rot,mat_tra,FRx_cam,FRy_cam,CRx_cam,CRy_cam);%将左相机的3D坐标转换为右相机的3D坐标系统  len = length(Image_Lp1);
pc_RGB_left_right = zeros(len, 3);
for i=1:lenpc_RGB_left_right(i, :) = (I_R *  Image_Lp1(i, :)' + I_tras')';
end%将左右两个相机的点云合并并显示最终重建的图像  
figure
subplot(121);
pcshow([pc_RGB_left_right; Image_Rp1], [Image_Lp2; Image_Rp2]); 
title('三维重建')
view([150,-120]);subplot(122);
pcshow([pc_RGB_left_right; Image_Rp1], [Image_Lp2; Image_Rp2]/128); 
title('三维重建')
view([150,-120]);
92

4.算法理论概述

         三维室内场景建模在计算机视觉、机器人导航、虚拟现实等领域有广泛应用。传统的建模方法通常基于激光扫描仪或深度相机,但这些设备价格昂贵且不易普及。基于双目RGB图像和图像深度信息的建模方法则具有成本低、易于推广的优点。

4.1 双目视觉原理

        双目视觉是模拟人类双眼观察物体的方式,通过两个不同视角的图像获取物体的三维信息。其核心原理是视差(Disparity)计算。

        假设左右两个相机的焦距为f,基线距(两相机中心距离)为B,物体在左图像和右图像中的像素坐标分别为(xl,yl)(x_l, y_l)(xl​,yl​)和(xr,yr)(x_r, y_r)(xr​,yr​),则物体的深度Z可计算为:

Z=fBxl−xrZ = \frac{fB}{x_l - x_r}Z=xl​−xr​fB​

此公式是基于理想情况下的双目视觉模型,实际应用中还需要考虑相机校正、图像匹配等问题。

4.2 深度信息获取

        除了双目视觉,还可以通过其他方法获取图像的深度信息,如结构光法、飞行时间法等。这些方法各有优缺点,适用于不同场景。

        通过双目视觉或其他方法获取深度信息后,可以将二维图像中的每个像素点映射到三维空间中,形成三维点云。点云的生成涉及相机内参和外参的标定。

        假设相机内参矩阵为K,外参矩阵为[R∣T][R|T][R∣T],对于图像中的一点p=(u,v,1)Tp = (u, v, 1)^Tp=(u,v,1)T,其对应的三维空间点P=(X,Y,Z)TP = (X, Y, Z)^TP=(X,Y,Z)T满足:

p=K[R∣T]Pp = K[R|T]Pp=K[R∣T]P

通过解这个方程,可以得到点P的三维坐标。遍历图像中的所有像素,即可生成三维点云。

4.3 表面重建

        生成三维点云后,需要进行表面重建以得到完整的三维模型。常用的表面重建方法有Delaunay三角剖分、Poisson表面重建等。这些方法旨在根据点云的空间分布,构建出光滑的表面模型。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/284291.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

prometheus-监控系统学习笔记02-安装实践-安装包方式

参考来源: B站视频:https://www.bilibili.com/video/BV17v4y1H76R 通过视频中的一建部署,完成组件的环境搭建,而且很快,不到十分钟。 记录下操作步骤 cd /opt/ #进入opt目录 git clone https://gitee.com/linge365…

eNSP综合实验合集(eNSP综合大作业合集)_可先收藏

作者:BSXY_19计科_陈永跃 BSXY_信息学院 注:未经允许禁止转发任何内容 **注:在该文章中就只对ensp综合实验做一个总结和归纳,只给出相应的topo图和需求说明和对应的文章的连接。有什么问题也可以私信我,看到都会回复的…

实验4.1 静态路由的配置

实验4.1 静态路由的配置 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.设置交换机和路由器的基本配置。2.使用display ip interface brief命令查看接口配置信息。3.配置静态路由,实现全网互通。 六、任务验收七、任务小结 一、任务描述 某公司刚…

mysql 21day yum安装数据库

目录 mysql下载官网下载mysql 源进入mysql 官网 yum安装mysql先安装mysql 源检查源修改安装版本方法一方法二 安装命令 mysql使用启动&开机启动查看密码修改密码登录数据库 mysql下载官网 https://dev.mysql.com/doc/ 链接: 点击进入mysql官网 下载mysql 源 进入mysql 官…

第9章:深度探讨知识问答系统评测:智能背后的挑战与技术方案

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

JavaScript 循环语句之for、while循环 | break continue

for循环 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>首页</title> </head><body><script type"text/javascript">var num 100 for (let i 0; i < num; i){console.log(i)}&l…

MySQL安装——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理

MySQLhttps://www.mysql.com/ 将下发的ds_db01.sql数据库文件放置mysql中 12、编写Scala代码&#xff0c;使用Spark将MySQL的ds_db01库中表user_info的全量数据抽取到Hive的ods库中表user_info。字段名称、类型不变&#xff0c;同时添加静态分区&#xff0c;分区字段为etl_da…

Elasticsearch 【版本7.X】之常用的语法大全

文章目录 监控相关 API 查看健康状况查看所有节点查看所有节点详细信息查看主节点查看所有索引查看所有分片 索引管理 创建索引查看索引查看索引字段类型修改索引字段删除索引别名 给索引添加别名查询某个索引下的别名给索引更换别名给索引解绑别名一个别名绑定多个索引查询ind…

JVM-9-Class类文件的结构

Java技术能够一直保持着非常良好的向后兼容性&#xff0c;Class文件结构的稳定功不可没。 Class文件是一组以8个字节为基础单位的二进制流&#xff0c;各个数据项目严格按照顺序紧凑地排列在文件之中。 Class文件格式采用一种类似于C语言结构体的伪结构来存储数据&#xff0c…

HarmonyOS—详解自定义组件的生命周期

前言 自定义组件 的生命周期回调函数用于通知用户该自定义组件的生命周期&#xff0c;这些回调函数是私有的&#xff0c;在运行时由开发框架在特定的时间进行调用&#xff0c;不能从应用程序中手动调用这些回调函数。 下图展示的是被Entry装饰的 组件生命周期&#xff1a; 今…

Ansible自动化运维以及模块使用

ansible的作用 远程操作主机功能 自动化运维(playbook剧本基于yaml格式书写) ansible是基于python开发的配置管理和应用部署工具。在自动化运维中&#xff0c;现在是异军突起 ansible能够批量配置、部署、管理上千台主机。类似于Xshell的一键输入工具。不需要每次都切换主机…

将yolo格式转化为voc格式:txt转xml(亲测有效)

1.文件目录如下所示&#xff1a; 对以上目录的解释&#xff1a; 1.dataset下面的image文件夹&#xff1a;里面装的是数据集的原图片 2.dataset下面的label文件夹&#xff1a;里面装的是图片对应得yolo格式标签 3.dataset下面的Annotations文件夹&#xff1a;这是一个空文件夹&…