redis:六、数据过期删除策略(惰性删除、定期删除)和基于redisson实现的分布式锁(看门狗机制、主从一致性)和面试模板

数据过期删除策略

Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用

惰性删除

惰性删除:设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key

优点 :对CPU友好,只会在使用该key时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查
缺点 :对内存不友好,如果一个key已经过期,但是一直没有使用,那么该key就会一直存在内存中,内存永远不会释放。

定期删除

定期删除:每隔一段时间,我们就对一些key进行检查,删除里面过期的key(从一定数量的数据库中取出一定数量的随机key进行检查,并删除其中的过期key)。

定期清理有两种模式:
SLOW模式是定时任务,执行频率可以通过修改配置文件redis.conf 来调整。
FAST模式执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms。

优点:可以通过限制删除操作执行的时长和频率来减少删除操作对 CPU 的影响。另外定期删除,也能有效释放过期键占用的内存。
缺点:难以确定删除操作执行的时长和频率。

面试回答模板

Redis的数据过期策略有哪些 ?

背熟以下答案,大概用时1min。

在redis中提供了两种数据过期删除策略,第一种是惰性删除,在设置该key过期时间后,我们不去管它,当需要该key时,我们再检查其是否过期,如果过期,我们就删掉它,反之返回该key。

第二种是定期删除,就是说每隔一段时间,我们就对一些key进行检查,删除里面过期的key。
定期删除存在两种模式:
SLOW模式是定时任务,任务执行频率可以通过修改配置文件redis.conf 来调整。
FAST模式执行频率不固定,但两次之间的间隔和每次耗时都有固定值。

Redis的过期删除策略实际是惰性删除和定期删除两种策略配合使用的。

分布式锁

Redis实现分布式锁主要利用Redis的setnx命令。setnx是SET if not exists(如果不存在,则 SET)的简写。

获取锁

命令:

# 添加锁,NX是互斥、EX是设置超时时间
SET lock value NX EX 10

释放锁

命令:

# 释放锁,删除即可
DEL key

基于redisson看门狗机制(锁的续期)

redis加锁时,如果不自己定义参数中的leaseTime(锁自动释放时间),或者定义的leaseTime为-1,那么就会开启看门狗机制。(不定义的话,这个线程默认的leaseTime就是30s)

boolean tryLock(long waitTime, long leaseTime, TimeUnit unit);

看门狗机制就是当一个线程A加锁成功,且达到看门狗机制的触发条件时,会额外开一个线程,一般命名为Watch dog,这个线程每隔(releaseTime/3)的时间就为A续期时间,即重置过期时间。一般这个续期时间为锁的有效时间的一半,也可以自己额外设置。
在该锁有效期间,如果有其他线程想要试图加锁,那么就会不断while循环重试。

而采用了看门狗机制的锁的释放,是需要手动完成的,释放完成后还需要通知看门狗线程。

需要注意的是,加锁、设置过期时间等操作都是基于lua脚本完成的,因为能保证操作的原子性

代码模板

public void redisLock() throws InterruptedException{RLock lock = redissonClient.getLock("heimalock");try{boolean isLock = lock.tryLock(10, TimeUnit.SECONDS);if(isLock){System.out.println("执行业务……");}}finally{lock.unlock();}
}

可重入性

锁的可重入性指的是同一个线程在持有锁的情况下,能够多次获取该锁而不会发生死锁或阻塞的情况。可重入锁的一个典型应用场景是在一个方法中调用另一个加锁的方法,譬如以下代码。如果方法A在获取锁后调用了方法B,而方法B也需要获取同一个锁,那么如果锁是可重入的,方法B可以直接获取到锁,而不会因为锁已被方法A持有而发生死锁。

public void add1(){RLock lock = redissonClient.getLock(“heimalock");boolean isLock = lock.tryLock();    //执行业务  add2();//释放锁lock.unlock();
}
public void add2(){RLock lock = redissonClient.getLock(“heimalock");boolean isLock = lock.tryLock();//执行业务//释放锁lock.unlock();
}

基于redisson实现的分布式锁是拥有可重入性的。
其中的KEY一般称为大键,可以根据自己的业务来命名。
field一般称为小键,是当前线程的唯一标识。
value记录着当前线程重入的次数。
在这里插入图片描述

主从一致性

对于多线程的主从一致性,实际上redisson没办法很好地保障。
像是原本如下运行,一个主库,两个从库,且java应用程序对主库进行加锁。
在这里插入图片描述
因为某种原因,主库短暂宕机,此时根据哨兵模式选举了下面的从库为新的主库。
此时又有个新的java应用来对这个新的主库进行加锁。那么就会出现两个线程同时持有一把锁的情况。
在这里插入图片描述

redlock红锁

为此,redisson提出了一个叫RedLock,红锁。
RedLock(红锁):不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁(n / 2 + 1),避免在一个redis实例上加锁。即,在超过一半的实例上进行加锁。但是这种机制实现复杂,性能较差,运维起来也很繁琐。所以实际开发中很少用。

AP思想和CP思想

综上,对于多线程的主从一致性,实际上redis没办法很好地保障。因为redis本身是AP思想。

AP思想(可用性与分区容忍):
AP思想注重系统的可用性和分区容忍性,即在遇到网络分区或节点故障的情况下,系统仍然能够提供服务并保持可用性。这意味着系统可以容忍一定程度的数据不一致或冲突,以保证用户的访问体验。

如果想要强一致性,建议使用CP思想的zookeeper。

CP思想(一致性与分区容忍):
CP思想注重系统的一致性和分区容忍性,即在分布式环境中保持数据的一致性,并且即使发生网络分区,系统也能保持一致性。这种设计思想追求强一致性,确保所有节点中的数据都是一致的,但可能会导致一些节点不可用。

面试回答模板

Redis分布式锁如何实现 ?

候选人:嗯,在redis中提供了一个命令setnx(SET if not exists)

由于redis的单线程的,用了命令之后,只能有一个客户端对某一个key设置值,在没有过期或删除key的时候是其他客户端是不能设置这个key的

面试官:好的,那你如何控制Redis实现分布式锁有效时长呢?

候选人:嗯,的确,redis的setnx指令不好控制这个问题,我们当时采用的redis的一个框架redisson实现的。

在redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了

还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自旋不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。

面试官:好的,redisson实现的分布式锁是可重入的吗?

候选人:嗯,是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数

面试官:redisson实现的分布式锁能解决主从一致性的问题吗

候选人:这个是不能的,比如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时当前持有Redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。

我们可以利用redisson提供的红锁来解决这个问题,它的主要作用是,不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁,并且要求在大多数redis节点上都成功创建锁,红锁中要求是redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题了。

但是,如果使用了红锁,因为需要同时在多个节点上都添加锁,性能就变的很低了,并且运维维护成本也非常高,所以,我们一般在项目中也不会直接使用红锁,并且官方也暂时废弃了这个红锁

面试官:好的,如果业务非要保证数据的强一致性,这个该怎么解决呢?

**候选人:**嗯~,redis本身就是支持高可用的,做到强一致性,就非常影响性能,所以,如果有强一致性要求高的业务,建议使用zookeeper实现的分布式锁,它是可以保证强一致性的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/285129.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL数据库,触发器、窗口函数、公用表表达式

触发器 触发器是由事件来触发某个操作(也包含INSERT、UPDATE、DELECT事件),如果定义了触发程序,当数据库执行这些语句时,就相当于事件发生了,就会自动激发触发器执行相应的操作。 当对数据表中的数据执行…

Redis——多级缓存

JVM进程缓存 为了演示多级缓存,这里先导入一个商品管理的案例,其中包含商品的CRUD功能。将来会给查询商品添加多级缓存。 导入Demo数据 1.安装mysql 后期做数据同步需要用到MySQL的主从功能,所以需要在虚拟机中,利用Docker来运…

任务十六:主备备份型防火墙双机热备

目录 目的 器材 拓扑 步骤 一、基本配置 配置各路由器接口的IP地址【省略】 1、配置BGP协议实现Internet路由器之间互联 2、防火墙FW1和FW2接口IP配置与区域划分 3、配置区域间转发策略 4、配置NAPT和默认路由 5、配置VRRP组,并加入Active/standby VGMP管…

图片转excel:二种合并方式,有何区别?

图片怎么转为可编辑的excel,并且将转换结果合并为一个表?打开眼精星表格文字识别电脑客户端,我们可以看到顶部有一个功能,名为“表格合并”,而在表格识别模块提交选项里,我们会发现有“合并”选项&#xff…

什么是关键词排名蚂蚁SEO

关键词排名是指通过搜索引擎优化(SEO)技术,将特定的关键词与网站相关联,从而提高网站在搜索引擎中的排名。关键词排名对于网站的流量和用户转化率具有至关重要的影响,因此它是SEO工作中最核心的部分之一。 如何联系蚂…

C# WPF上位机开发(usb设备访问)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 目前很多嵌入式设备都支持usb访问,特别是很多mcu都支持高速usb访问。和232、485下个比较,usb的访问速度和它们基本不在一个…

微软近日推出了Phi-2,这是一款小型语言模型,但其性能却十分强大

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

redis各种数据类型的应用场景

String应用场景 单值缓存 SET key value GET key 对象缓存 SET user:1 value(json格式数据)MSET user:1:name zhuge user:1:balance 1888 MGET user:1:name user:1:balance 分布式锁 SETNX product:10001 true //返回1代表获取锁成功 …

iPhone 17Pro/Max或升级4800万像素长焦镜头,配备自研Wi-Fi 7芯片。

iPhone 16未至,关于iPhone 17系列的相关消息就已经放出,到底是谁走漏了风声。 海通国际证券技术分析师Jeff Pu近日发布报告称,苹果将为2025年推出的iPhone 17ProMax配备4800万像素的长焦镜头。经调查,该分析师认为提升iPhone拍摄方…

【百度PARL】强化学习笔记

文章目录 强化学习基本知识一些框架Value-based的方法Q表格举个例子 强化的概念TD更新 Sarsa算法SampleSarsa Agent类 On_policy vs off_policy函数逼近与神经网络DQN算法DQN创新点DQN代码实现model.pyalgorithm.pyagent.py总结:举个例子 实战 视频:世界…

centos安装opencv并在springboot中使用

使用conda安装opencv,并在docker运行的容器中使用,这里以运行则springboot应用的容器为例 步骤一:安装 在conda中安装 # 安装依赖 conda install numpy matplotlib# 安装opencv conda install -c conda-forge opencv # 或者制定版本 conda…

AI创作系统ChatGPT网站源码,支持AI绘画,支持GPT语音对话+智能思维导图生成

一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作Ch…