智能优化算法应用:基于世界杯算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于世界杯算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于世界杯算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.世界杯算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用世界杯算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.世界杯算法

世界杯算法原理请参考:https://blog.csdn.net/u011835903/article/details/120418580
世界杯算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

世界杯算法参数如下:

%% 设定世界杯优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明世界杯算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/285695.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element组件库的日期选择器如何限制?

本次项目中涉及到根据日期查找出来的数据进行调整,所以修改的数据必须是查找范围内的数据.需要对调整数据的日期进行限制,效果如下: 首先我们使用了element 组件库的日期选择器,其中灌完介绍, picker-options中函数disabledDate可以设置禁用状态,代码如下: <el-date-pickerv…

SD-WAN网络的可扩展性解析

SD-WAN组网以其卓越的可扩展性而脱颖而出&#xff0c;为企业提供了一个灵活适应不断扩张和增长需求的网络解决方案。SD-WAN组网通过轻松实现规模调整、拓扑变更以及多种接入方式的切换&#xff0c;确保网络的高效性和可管理性。对于正处于快速发展时期的企业而言&#xff0c;SD…

【二分查找】【z型搜索】LeetCode240:搜索二维矩阵

LeetCoe240搜索矩阵 作者推荐 【贪心算法】【中位贪心】.执行操作使频率分数最大 本文涉及的基础知识点 二分查找算法合集 题目 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。 每列的…

OpenAI 偷偷在训练 GPT-4.5!?

最近看到有人已经套路出 ChatGPT 当前的版本&#xff0c;回答居然是 gpt-4.5-turbo&#xff1a; 实际试验下&#xff0c;用 starflow.tech&#xff0c;切换到小星 4 全能版&#xff08;同等官网最新 GPT-4&#xff09;&#xff0c;复制下面这段话问它&#xff1a; What is the…

Apache RocketMQ 5.0 腾讯云落地实践

Apache RocketMQ 发展历程回顾 RocketMQ 最早诞生于淘宝的在线电商交易场景&#xff0c;经过了历年双十一大促流量洪峰的打磨&#xff0c;2016年捐献给 Apache 社区&#xff0c;成为 Apache 社区的顶级项目&#xff0c;并在国内外电商&#xff0c;金融&#xff0c;互联网等各行…

java继承

1.为什么需要继承 我们编写了两个类,一个是Puppil类(小学生),一个是Graduate(大学生),问题:两个类的属性和方法有很多是相同的,怎么办&#xff1f; 把共有的属性和方法抽离出来: 父类&#xff1a; package com.hspedu.extends01;//父类,是Pupil和Graduate的父类 public cla…

UE5 C++(六)— 枚举UENUM、结构体USTRUCT和补充属性说明符

文章目录 枚举&#xff08;ENUM&#xff09;第一种方式第二种方式 结构体&#xff08;USTRUCT&#xff09;补充属性说明符&#xff08;ExposeOnSoawn&#xff09;结构体创建数据表格 枚举&#xff08;ENUM&#xff09; 第一种方式 定义枚举 UENUM(BlueprintType) namespace …

2023.12.18Linux部署项目

动态查看最新内容 防火墙不能杀毒&#xff0c;只能限制服务器的哪些端口可以被访问 哪些主机可以访问本服务器 防火墙开启之后默认封闭所有端口&#xff0c;自己再用策略声明把哪些端口放开 ksh jdk&#xff1a;二进制包 MySQL&#xff1a;rpm包 Redis&#xff1a;源码…

RTLS 解决现实场景的25种问题

实时定位系统 (RTLS) 可以改变我们理解周围世界的方式。 想想你有多少次停下来寻找某样东西。您可能正在寻找钥匙、电话、鞋子、零食、背包、办公室中的重要文件、停车场中的车辆&#xff0c;或者可能正在寻找街道标志或地标来引导自己。我们大多数人每天都会希望更好地了解我…

7.1组合及其优化(LC77-M)

算法&#xff1a; 第一次取1 2 3 4 取1时&#xff0c;留下234 取2时&#xff0c;留下34 取3时&#xff0c;留下4 取4时&#xff0c;留下null 接着继续取234中的2&#xff0c;与1组合&#xff0c;得到12 取234中的3&#xff0c;与1组合&#xff0c;得到13 取234中的4&#…

ElasticSearch详细搭建以及常见错误high disk watermark [ES系列] - 第497篇

导读 历史文章&#xff08;文章累计490&#xff09; 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六…