《ThreadLocal使用与学习总结:2023-12-15》史上最详细由浅入深解析ThreadLocal

由浅入深全面解析ThreadLocal

目录

  • 由浅入深全面解析ThreadLocal
    • 简介
    • 基本使用
    • ThreadLocal与synchronized的区别
    • ThreadLocal现在的设计(JDK1.8)
    • ThreadLocal核心方法源码分析
    • ThreadLocalMap源码分析
    • 弱引用与内存泄露(内存泄漏和弱引用没有直接关系)
    • ThreadLocal核心源码(Hash冲突解决)

简介

  1. 线程并发:在多线程并发的场景下使用
  2. 传递数据:我们可以通过ThreadLocal在同一线程,不同组件中传递公共变量
  3. 线程隔离:每个线程的变量都是独立的,不会相互影响

基本使用

  1. 常用方法
    在这里插入图片描述

  2. 代码案例实现
    (1) 不使用ThreadLocal时模拟多线程存取数据

public class ThreadLocalDemo1 {private String content;public String getContent() {return content;}public void setContent(String content) {this.content = content;}public static void main(String[] args) {ThreadLocalDemo1 threadLocalDemo = new ThreadLocalDemo1();for (int i = 0; i < 5; i++) {Thread thread = new Thread(new Runnable() {@Overridepublic void run() {/*** 每一个线程存一个变量,过一会取出这个变量*/threadLocalDemo.setContent(Thread.currentThread().getName() + "的数据");System.out.println("------------------------");System.out.println(Thread.currentThread().getName() + "----->" + threadLocalDemo.getContent());}});thread.setName("线程" + i);thread.start();}}
}

结果:

------------------------
线程0----->线程4的数据
------------------------
线程4----->线程4的数据
------------------------
线程2----->线程4的数据
------------------------
线程3----->线程4的数据
------------------------
线程1----->线程4的数据

(2) 使用ThreadLocal对多线程进行数据隔离,把数据绑定到ThreadLocal
(传统解决方案首先想到的就是加锁,确实可以实现,但是却牺牲了效率,需要等待上一个线程之行结束才可以往下之行)

public class ThreadLocalDemo2 {ThreadLocal<String> threadLocal = new ThreadLocal<>();private String content;public String getContent() {return threadLocal.get();}public void setContent(String content) {threadLocal.set(content);}public static void main(String[] args) {ThreadLocalDemo2 threadLocalDemo2 = new ThreadLocalDemo2();for (int i = 0; i < 5; i++) {Thread thread = new Thread(new Runnable() {@Overridepublic void run() {/*** 每一个线程存一个变量,过一会取出这个变量*/threadLocalDemo2.setContent(Thread.currentThread().getName()+"的数据");System.out.println("------------------------");System.out.println(Thread.currentThread().getName() + "----->" + threadLocalDemo2.getContent());}});thread.setName("线程" + i);thread.start();}}
}

结果:

------------------------
------------------------
------------------------
线程3----->线程3的数据
------------------------
线程2----->线程2的数据
线程1----->线程1的数据
线程0----->线程0的数据
------------------------
线程4----->线程4的数据

ThreadLocal与synchronized的区别

二者都是用来处理多线程并发访问的问题,但是二者的原理和侧重点不一样,简要说就是,ThreadLocal牺牲了空间,而synchronized是牺牲了时间来保证线程安全(隔离)。
在这里插入图片描述
总结:在上述的案例当中,使用ThreadLocal更为合理,这样保证了程序拥有了更高的并发性。

ThreadLocal现在的设计(JDK1.8)

  1. 简介
    每一个Thread维护一个ThreadLocalMap,这个Map的key为ThreadLocal实例本身,而value则为实际存储的值。
  2. 具体过程
    (1)每一个Thread内部都有一个Map(ThreadLocalMap)
    (2)Map里面存储的ThreadLocal对象(key)和线程的变量副本(value)
    (3)Thread的Map是由ThreadLocal来维护的,由ThreadLocal负责向Map获取和设置线程的变量值。
    (4)对于线程获取值,每一个副本只能获取当前线程本地的副本值,别的线程无法访问到,互不干扰,实现了线程隔离。
  3. 对比与1.8之前的设计(相当于Thread与ThreadLocal的角色互换了)
    在这里插入图片描述
  4. 1.8设计的好处
    (1)每个Map存储的Entry数量变少了(因为实际状况下Thread比ThreadLocal多)
    (2)当Thread销毁时,ThreadLocalMap也会随之销毁,避免内存的浪费

ThreadLocal核心方法源码分析

在这里插入图片描述

  1. get方法源码
public T get() {// 获取当前线程Thread t = Thread.currentThread();// 获取ThreadLocalMapThreadLocalMap map = getMap(t);// map不为空时,获取里面的Entryif (map != null) {ThreadLocalMap.Entry e = map.getEntry(this);if (e != null) {@SuppressWarnings("unchecked")T result = (T)e.value;// 返回结果return result;}}// 没有则赋值初始值null并返回return setInitialValue();}
  1. set方法源码
public void set(T value) {// 获取当前线程Thread t = Thread.currentThread();// 获取ThreadLocalMapThreadLocalMap map = getMap(t);if (map != null) {// 不为空直接setmap.set(this, value);} else {// map为空则创建并setcreateMap(t, value);}}
  1. initialValue方法返回初始值(protected修饰为了让子类覆盖设计的)需要自定义初始值可以重写该方法
protected T initialValue() {return null;}
  1. remove方法
public void remove() {// 获取当前线程的ThreadLocalMapThreadLocalMap m = getMap(Thread.currentThread());if (m != null) {// 移除ThreadLocalMapm.remove(this);}}
  1. setInitialValue方法
private T setInitialValue() {// 得到初始化值nullT value = initialValue();// 获取当前线程Thread t = Thread.currentThread();// 获取线程中ThreadLocalMapThreadLocalMap map = getMap(t);// map存在的话把null设置进去,不存在则创建一个并将null设置进去if (map != null) {map.set(this, value);} else {createMap(t, value);}// 如果当前ThreadLocal属于TerminatingThreadLocal(关闭的ThreadLocal)则register(注册)到TerminatingThreadLocalif (this instanceof TerminatingThreadLocal) {TerminatingThreadLocal.register((TerminatingThreadLocal<?>) this);}return value;}

ThreadLocalMap源码分析

  1. 简介
    ThreadLocalMap是ThreadLocal的内部类,没有实现Map接口,是独自设计实现Map功能,内部的Entry也是独立的。
  2. 结构图解
    在这里插入图片描述
  3. 成员变量
		// Entry类,继承弱应用,为了和Thread的生命周期解绑static class Entry extends WeakReference<ThreadLocal<?>> {/** The value associated with this ThreadLocal. */Object value;Entry(ThreadLocal<?> k, Object v) {super(k);value = v;}}/*** The initial capacity -- MUST be a power of two.* 初始容量,必须是二的幂*/private static final int INITIAL_CAPACITY = 16;/*** The table, resized as necessary.* table.length MUST always be a power of two.* 根据需要调整大小。长度必须是2的幂。*/private Entry[] table;/*** The number of entries in the table.* table中的entrie数量*/private int size = 0;/*** The next size value at which to resize.* 要调整大小的下一个大小值*/private int threshold; // Default to 0/*** Set the resize threshold to maintain at worst a 2/3 load factor.* 设置调整大小阈值以维持最坏的2/3负载因子*/private void setThreshold(int len) {threshold = len * 2 / 3;}/*** Increment i modulo len.* 增量一*/private static int nextIndex(int i, int len) {return ((i + 1 < len) ? i + 1 : 0);}/*** Decrement i modulo len.* 减量一*/private static int prevIndex(int i, int len) {return ((i - 1 >= 0) ? i - 1 : len - 1);}

弱引用与内存泄露(内存泄漏和弱引用没有直接关系)

  1. 内存泄漏/溢出概念
    (1)Memory overflow:内存溢出,没有足够的空间提供给申请者使用
    (2)Memory leak:内存泄漏,系统中已动态分配的堆内存由于某种原因无法释放或者没有释放,导致系统内存堆积,影响系统运行,甚至导致系统崩溃。内存泄漏终将导致内存溢出。
  2. 强/弱引用概念
    (1)Strong Referce:强引用,我们常见的对象引用,只要有一个强引用指向对象,也就表明还“活着”,这种状况下垃圾回收机制(GC)是不会回收的。
    (2)Weak Referce:弱引用,继承了WeakReferce的对象,垃圾回收器发现了只具有弱引用的对象,不管当前系统的内存是否充足,都会回收他的内存。
  3. 如果key,即Entry使用强引用,也无法避免内存泄漏
    因为Entry是在Thread当前线程中,生命周期和Thread一样,没有手动删除Entry时Entry就会内存泄漏。
  4. 也就是说,只要在调用完ThreadLocal后及时使用remove方法,才能避免内存泄漏
    在这里插入图片描述
    在这里插入图片描述

ThreadLocal核心源码(Hash冲突解决)

  1. 从构造方法入手
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {// 初始化tabletable = new Entry[INITIAL_CAPACITY];// 计算索引在数组中的位置(核心代码)int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);// 设置值table[i] = new Entry(firstKey, firstValue);size = 1;// 设置阈值(INITIAL_CAPACITY的三分之二)setThreshold(INITIAL_CAPACITY);}
  1. 重点分析int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
private final int threadLocalHashCode = nextHashCode();private static int nextHashCode() {return nextHashCode.getAndAdd(HASH_INCREMENT);}private static AtomicInteger nextHashCode = new AtomicInteger();private static final int HASH_INCREMENT = 0x61c88647;public final int getAndAdd(int delta) {return unsafe.getAndAddInt(this, valueOffset, delta);}

(1)这里定义了一个AtomicInteger,每次获取并加上HASH_INCREMENT(0x61c88647,这个值与斐波那契数(黄金分割)有关),是为了让哈希码能够均匀的分布在2的n次方的数组(Entry[])里面,也就尽可能避免了哈希冲突。
(2)hashcode & (INITIAL_CAPACITY - 1) 相当于hashcode % (INITIAL_CAPACITY - 1) 的高效写法,所以size必须为2的次幂,这样最大程度避免了哈希冲突。

  1. set方法源码分析
private void set(ThreadLocal<?> key, Object value) {Entry[] tab = table;int len = tab.length;// 计算索引int i = key.threadLocalHashCode & (len-1);/**** 使用线性探测法查找元素* */for (Entry e = tab[i];e != null;// 使用线性探测法查找元素e = tab[i = nextIndex(i, len)]) {// 获取到该Entry对应的ThreadLocalThreadLocal<?> k = e.get();if (k == key) {// key存在则覆盖valuee.value = value;return;}// key为null但是值不为null,这说明了之前使用过,但是ThreadLocal被垃圾回收了,当前的Entry是一个陈旧的(Stale)元素if (k == null) {// key(ThreadLocal)不存在,则新Entry替换旧的Entry,此方法做了不少垃圾清理的动作,避免了内存泄漏。replaceStaleEntry(key, value, i);return;}}// ThreadLocal中未找到key也没有陈旧的元素,此时则在这个位置新创建一个Entrytab[i] = new Entry(key, value);int sz = ++size;// cleanSomeSlots用于清理e.get()为null的key,如果大于阈值(2/3容量)则rehash(执行一次全表扫描清理工作)if (!cleanSomeSlots(i, sz) && sz >= threshold)rehash();}/*** 线性探测法查找元素,到最后一个时重定位到第一个*/private static int nextIndex(int i, int len) {return ((i + 1 < len) ? i + 1 : 0);}

(详细视频可前往B站黑马程序员)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/285998.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cleanmymac有必要买吗 macbook空间不足怎么办 清理macbook磁盘空间

大家早上好&#xff0c;中午好&#xff0c;下午好&#xff0c;晚上好。 文章有点长&#xff0c;建议先收藏。 macbook是一款非常受欢迎的笔记本电脑&#xff0c;它拥有优秀的性能和设计&#xff0c;但是也有一个常见的问题&#xff0c;就是磁盘空间不足。如果你的macbook经常…

【技术前沿】数字孪生技术助推城市智慧供热:探讨换热站3D可视化的创新之路

换热站作为供热系统不可或缺的一部分&#xff0c;其能源消耗对城市环保至关重要。在双碳目标下&#xff0c;供热企业可通过搭建智慧供热系统&#xff0c;实现供热方式的低碳、高效、智能化&#xff0c;从而减少碳排放和能源浪费。 通过应用物联网、大数据等高新技术&#xff0…

ST股票预测模型(机器学习_人工智能)

知己知彼&#xff0c;百战不殆&#xff1b;不知彼而知己&#xff0c;一胜一负&#xff1b;不知彼&#xff0c;不知己&#xff0c;每战必贻。--《孙子兵法》谋攻篇 ST股票 ST股票是指因连续两年净利润为负而被暂停上市的股票&#xff0c;其风险较高&#xff0c;投资者需要谨慎…

移动端事件

一、移动端事件类型 touchstart&#xff1a;手指按下事件&#xff0c;类似 mousedowntouchmove&#xff1a;手指移动事件&#xff0c;类似 mousemovetouchend 手指抬起事件&#xff0c;类似 mouseup var box document.querySelector(.container); box.addEventListener(touc…

Echarts实现3D柱状图

Echarts实现3D柱状图 效果图代码 效果图 代码 <!--此示例下载自 https://echarts.apache.org/examples/zh/editor.html?cbar3d-dataset&gl1 --> <!DOCTYPE html> <html lang"en" style"height: 100%"> <head><meta chars…

新年跨年烟花超酷炫合集【内含十八个烟花酷炫效果源码】

❤️以下展示为全部烟花特效效果 ❤️下方仅展示部分代码 ❤️源码获取见文末 🎀HTML5烟花喷泉 <style> * {padding:0;margin:0; } html,body {positi

oracle与gbase8s迁移数据类型对照

声明&#xff1a;以下为笔者阅读gbase官方文档和oracle官方文档的理解&#xff0c;如有错误&#xff0c;敬请指正。oracle与gbase8s迁移数据类型对照及举例说明 最终结论&#xff1a;oracle与gbase8s数据类型对应关系关于单精度与双精度的区别关于定点与浮点定义的区别精度的定…

<软考高项备考>《论文专题 - 16 资源管理(二) 》

4 过程2-估算活动资源 4.1 提出问题 问题过程2-活动资源估算做什么估算执行项目所需的团队资源&#xff0c;以及材料、设备和用品的类型和数量的过程&#xff1b;作用&#xff1a;明确完成项目所需的资源种类、数量和特性为什么做资源不同影响项目进度也不同。活动估算资源是…

【ranger】CDP环境 更新 ranger 权限策略会发生低概率丢失权限策略的解决方法

一、问题描述&#xff1a; 我们的 kafka 服务在更新&#xff08;添加&#xff09; ranger 权限时&#xff0c;会有极低的概率导致 MM2 同步服务报错&#xff0c;报错内容 Not Authorized。但是查看 ranger 权限是赋予的&#xff0c;并且很早配置的权限策略也会报错。 相关组件…

干货分享 | 如何在TSMaster中对常用总线报文信号进行过滤?

TSMaster软件平台支持对不同总线&#xff08;CAN、LIN、FlexRay&#xff09;的报文和信号过滤&#xff0c;过滤方法一般有全局接收过滤、数据流过滤、窗口过滤、字符串过滤、可编程过滤&#xff0c;针对不同的总线信号过滤器的使用方法也基本相同。今天重点和大家分享一下关于T…

() 括号

命令说明&#xff1a; 小括号在批处理编程中有特殊的作用&#xff0c;左右括号必须成对使用&#xff0c;括号中可以包括多行命令&#xff0c;这些命令将被看成一个整体&#xff0c;视为一条命令行。 括号在for语句和if语句中常见&#xff0c;用来嵌套使用循环或条件语句&#x…

C#调用阿里云接口实现动态域名解析,支持IPv6(Windows系统下载可用)

电信宽带一般能申请到公网IP&#xff0c;但是是动态的&#xff0c;基本上每天都要变&#xff0c;所以想到做一个定时任务&#xff0c;随系统启动&#xff0c;网上看了不少博文很多都支持IPv4&#xff0c;自己动手写了一个。 &#xff08;私信可全程指导&#xff09; 部署步骤…