【算法系列篇】递归、搜索和回溯(四)

在这里插入图片描述

文章目录

  • 前言
  • 什么是决策树
  • 1. 全排列
    • 1.1 题目要求
    • 1.2 做题思路
    • 1.3 代码实现
  • 2. 子集
    • 2.1 题目要求
    • 2.2 做题思路
    • 2.3 代码实现
  • 3. 找出所有子集的异或总和再求和
    • 3.1 题目要求
    • 3.2 做题思路
    • 3.3 代码实现
  • 4. 全排列II
    • 4.1 题目要求
    • 4.2 做题思路
    • 4.3 代码实现

前言

前面我们通过几个题目基本了解了解决递归类问题的基本思路和步骤,相信大家对于递归多多少少有了更加深入的了解。那么本篇文章我将为大家分享结合决策树来解决递归、搜索和回溯相关的问题。

什么是决策树

决策树是一种基本的分类与回归方法。在分类问题中,决策树通过构建一棵树形图来对数据进行分类。树的每个节点表示一个特征属性,每个分支代表一个特征属性上的判断条件,每个叶节点代表一个类别。在回归问题中,决策树可以预测一个实数值。

下面是一个简单的决策树:
在这里插入图片描述
知道了什么是决策树,下面我们将运用决策树来解决实际问题。

1. 全排列

https://leetcode.cn/problems/permutations/

1.1 题目要求

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

提示:

1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums 中的所有整数 互不相同
class Solution {public List<List<Integer>> permute(int[] nums) {}
}

1.2 做题思路

相信大家肯定做过跟排列相关的问题,就是三个人坐座位的问题。第一座位可以坐A、B、C 任何一个人,如果第一个座位坐的是 A 的话,那么第二个位子 A 就不能再坐了,第二个位子就只能在 B、C 之间选择了,如果 B 选择了第二个位子,那么第三个位置就只能 C 选择了。所以这个问题通过决策树来体现的话就是这样的:

在这里插入图片描述
但是上面的图我们会发现这几种情况会有重复的情况,那么我们如何筛选掉这些重复的情况呢?可以使用一个标记数组来记录已经选择过的元素,当下一次选择的时候就选择这个标记数组中没有被选择的剩下的元素的其中一个。这道题目跟上面的例子的思路是一样的,这里我就不为大家再画一个图了。

那么这道题使用代码的思想该如何解决呢?每次递归我们还是将数组中的所有元素都给列举出来,不过我们需要根据标记数组中元素的使用情况来选择是否可以选择这个元素,如果某个元素没有被选择,那么这次就选择这个元素,将这个元素标记为已使用,然后继续递归,当当前情况列举完成之后就需要恢复现场,当路径集合中记录的元素的个数和数组中的元素个数相同的时候,就说明一种情况已经列举完成,就可以将当前情况添加进ret集合中,返回。

1.3 代码实现

class Solution {List<Integer> path;List<List<Integer>> ret;boolean[] vis;public List<List<Integer>> permute(int[] nums) {//对全局变量进行初始化path = new ArrayList<>();ret = new ArrayList<>();vis = new boolean[nums.length];dfs(nums);return ret;}private void dfs(int[] nums) {//当path中元素的大小等于数组的大小,就说明一种情况已经列举完成,这事需要我们将当前path中的数据添加进ret中,并且返回if (path.size() == nums.length) {ret.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {if (vis[i] == false) {path.add(nums[i]);//将当前元素标记为已使用vis[i] = true;//考虑该位置之后的其他元素的选择dfs(nums);//恢复现场path.remove(path.size() - 1);vis[i] = false;}}}
}

在这里插入图片描述

2. 子集

https://leetcode.cn/problems/subsets/

2.1 题目要求

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。

解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

示例 1:

输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

示例 2:

输入:nums = [0]
输出:[[],[0]]

提示:

1 <= nums.length <= 10
-10 <= nums[i] <= 10
nums 中的所有元素 互不相同
class Solution {public List<List<Integer>> subsets(int[] nums) {}
}

2.2 做题思路

前面全排列中是当路径集合中的元素个数和数组中的元素的个数相同的时候视为一种情况,这道题目就不一样了,这个是数组的子集,也就是说每一种情况的元素的个数可能是不一样的,所以我们路径集合每新添加一个元素就可以视为一种情况,就需要将路径中的元素添加进ret集合中,思路跟上一道题目是类似的,都是通过决策树递归来实现的,但是呢?仔细看题目可以发现,就是集合[1,2],[2,1]是一种情况,也就是说子集的选择跟顺序无关,那么我们又该如何避免出现重复的情况呢?

这其实也不难,想想如果是在数学中我们会怎样思考?如果当前位置我们选择了某个元素,那么后面的位置我们就从这个元素的后面元素中去选择。

在这里插入图片描述
所以通过代码体现的话,就是我们可以使用一个 pos 变量来记录当前位置选择的元素的下标,然后下一个位置选择元素递归的话,我们就从 pos 的下一个位置开始选择。

2.3 代码实现

class Solution {List<Integer> path;List<List<Integer>> ret;public List<List<Integer>> subsets(int[] nums) {path = new ArrayList<>();ret = new ArrayList<>();dfs(nums, 0)return ret;}private void dfs(int[] nums, int pos) {//进入这个函数就可以将path中的结果添加进ret中,这样就可以将空集的情况给考虑上ret.add(new ArrayList<>(path));//循环的话,就从pos位置开始遍历for (int i = pos; i < nums.length; i++) {path.add(nums[i]);dfs(nums, i + 1);path.remove(path.size() - 1);}}
}

在这里插入图片描述

3. 找出所有子集的异或总和再求和

https://leetcode.cn/problems/sum-of-all-subset-xor-totals/

3.1 题目要求

一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 空 ,则异或总和为 0 。

例如,数组 [2,5,6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。
给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。

注意:在本题中,元素 相同 的不同子集应 多次 计数。

数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a 。

示例 1:

输入:nums = [1,3]
输出:6
解释:[1,3] 共有 4 个子集:
- 空子集的异或总和是 0 。
- [1] 的异或总和为 1 。
- [3] 的异或总和为 3 。
- [1,3] 的异或总和为 1 XOR 3 = 2 。
0 + 1 + 3 + 2 = 6

示例 2:

输入:nums = [5,1,6]
输出:28
解释:[5,1,6] 共有 8 个子集:
- 空子集的异或总和是 0 。
- [5] 的异或总和为 5 。
- [1] 的异或总和为 1 。
- [6] 的异或总和为 6 。
- [5,1] 的异或总和为 5 XOR 1 = 4 。
- [5,6] 的异或总和为 5 XOR 6 = 3 。
- [1,6] 的异或总和为 1 XOR 6 = 7 。
- [5,1,6] 的异或总和为 5 XOR 1 XOR 6 = 2 。
0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28

示例 3:

输入:nums = [3,4,5,6,7,8]
输出:480
解释:每个子集的全部异或总和值之和为 480 。

提示:

1 <= nums.length <= 12
1 <= nums[i] <= 20
class Solution {public int subsetXORSum(int[] nums) {}
}

3.2 做题思路

这道题目跟上面的子集思路基本上没什么区别,之不过上面的子集是要求出所有子集的情况,而这道题目是求出所有子集异或之后的总和。因为思路基本跟上个题一样,所以我们直接来看代码。

3.3 代码实现

class Solution {int path;int ret;public int subsetXORSum(int[] nums) {dfs(nums, 0);return ret;}private void dfs(int[] nums, int pos) {//前面是将集合添加进ret中,这里我们是将每种情况加进ret中ret += path;for (int i = pos; i < nums.length; i++) {//这里我们不是将新加入的元素加入到path集合中,而是将新加入的元素和之前path元素的异或的结果异或path ^= nums[i];dfs(nums, i + 1);//恢复现场(两个相同的元素异或,结果为0)path ^= nums[i];}}
}

在这里插入图片描述

4. 全排列II

https://leetcode.cn/problems/permutations-ii/

4.1 题目要求

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

1 <= nums.length <= 8
-10 <= nums[i] <= 10
class Solution {public List<List<Integer>> permuteUnique(int[] nums) {}
}

4.2 做题思路

这道题目跟 全排列I 是不一样的,全排列I 中不存在重复的元素,但是这道题目中存在重复的元素,也就是说[1, 1, 2] 和 [1, 1, 2] 是同一个排列,这不看起来就是同一个排列吗?难道还能不同吗?其实这里的 1 不是同一个1,[1(下标为0), 1(下标为1), 2],[1(下标为1), 1(下标为0), 2],全排列I 中我们只需要使用一个标记数组来避免同一个元素被重复使用的情况,而这个 全排列II 中,我们还需要筛选出因元素相同而导致的相同排列的情况。那么如何筛选呢?我们来看个例子:

在这里插入图片描述

4.3 代码实现

class Solution {List<Integer> path;List<List<Integer>> ret;boolean[] vis;public List<List<Integer>> permuteUnique(int[] nums) {path = new ArrayList<>();ret = new ArrayList<>();vis = new boolean[nums.length];//首先将重复元素给排序到一起Arrays.sort(nums);dfs(nums);return ret;}private void dfs(int[] nums) {if (path.size() == nums.length) {ret.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {if (vis[i] == false && (i == 0 || (nums[i - 1] != nums[i]) || vis[i - 1] == true)) {path.add(nums[i]);vis[i] = true;dfs(nums);//恢复现场path.remove(path.size() - 1);vis[i] = false;}}}
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/286057.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue中父子Props传值不能修改的原因分析以及解决办法

Vue 官方文档中对于 Prop 的定义&#xff1a; Prop 是你可以在组件上注册的一些自定义属性。当一个值传递给一个 props 属性的时候&#xff0c;它就变成了那个组件实例的一个属性。为了给子组件传递数据&#xff0c;我们需要在该组件上使用 v-bind 指令绑定需要传递的数据。 由…

生物识别应用指纹的算法是什么样的?有什么性能?

方案特点 • 采用金融级安全芯片 ACH512 的指纹模组&#xff0c;指纹和密码安全存储&#xff0c;云端数据安全传输 • 采用高性能指纹专用安全MCU芯片ACM32FP4&#xff0c;支持小点阵图像算法处理 • 支持80*64、88*112、96*96、160*160、192*192等像素传感器 • 已适配传…

亚马逊,速卖通,shein卖家如何准确有效的测评补单

一、合理规划测评时间和数量 卖家需要合理规划测评的时间和数量。如果卖家过于频繁地进行测评&#xff0c;或者在短时间内进行大量的测评&#xff0c;这可能会被视为恶意行为&#xff0c;从而触犯风控机制。因此&#xff0c;卖家需要根据自己的销售情况和市场需求&#xff0c;…

二进制转十六进制字符串的C语言高效率实现(如“10100011“转为字符串“A3“)

对于一串二进制01比特,有时为了显示或者编辑方便高效,我们需要将二进制比特流转换成十六进制,众所周知,二进制转十六进制是每4比特进行转换,例如将以下二进制流: 1010 0011 1100 1101 转换为十六进制应为: A3CD 有时候,还可以每字节中间添加一个空格 A3 CD 下面直接…

Android 应用基准分析

先推荐一个作者的开源项目 最快的Json解析方式 参考 benchmark数据参考 benchmark的例子 可以参考json-benchmark 应用基准分析 是衡量时间维度的框架,是App界的鲁大师跑分,常用于耗时判断,冷启动,热启动,框架对比 预热对比等方面 开局一张图 下面再编 今天要做的是Microbe…

详细教程 - 从零开发 Vue 鸿蒙harmonyOS应用 第七节-—— 鸿蒙应用进程通信深度剖析

一、简介 1.1 进程通信的重要性 不同进程间需要通过通信来协作完成任务良好的IPC机制是构建模块化应用的必要手段 1.2 鸿蒙采用的RPC机制 鸿蒙应用进程通信采用了轻量级RPC,流程如下: 客户端发送请求数据到服务器进程服务器调用函数处理请求,并返回响应客户端获取并处理响应…

Educational Codeforces Round 160 (Rated for Div. 2)(D 动态规划)

关于如何思考DP这件事...这题还是比较好的 思路&#xff1a;考虑为当前共有 i 个数且以为结尾&#xff0c;能够形成的字段的个数。要想求出&#xff0c;只需要知道的前一个数可以是什么&#xff0c;这样就能够进行状态转移了。 首先定义是前方第一个比小的数。 1、首先考虑比…

搭建知识付费平台?明理信息科技为你提供全程解决方案

明理信息科技saas知识付费平台 在当今数字化时代&#xff0c;知识付费已经成为一种趋势&#xff0c;越来越多的人愿意为有价值的知识付费。然而&#xff0c;公共知识付费平台虽然内容丰富&#xff0c;但难以满足个人或企业个性化的需求和品牌打造。同时&#xff0c;开发和维护…

在Java中高效使用Lambda表达式和流(Streams)的技巧

Java中如何高效使用Lambda表达式和流&#xff08;Streams&#xff09;的技巧 1. 简介 在Java中&#xff0c;Lambda表达式和流&#xff08;Streams&#xff09;是Java 8引入的两个强大的特性。Lambda表达式为Java添加了一种简洁的方式来实现函数式编程&#xff0c;而流提供了一…

为什么是60R+60R+电容,而不是直接用120R?

我们经常会在CAN通讯中看到如下所示的设计&#xff1a;CAN终端电阻不直接用120欧姆&#xff0c;而是用两个60欧姆串联&#xff0c;并且在两个电阻中间用一个小电容接地。 所以为什么这么做呢&#xff1f;难道说用一颗电阻不好吗&#xff1f;还可以节省点一些布局空间。 存在即…

【OpenGL/WebGL】Shader中如何获取摄像机视口的宽高

一、需求背景 在有些需求中&#xff0c;物体的大小是随着摄像机的视口的大小而变化的。如下图中&#xff0c;蓝色小方块&#xff0c;随着不断放大&#xff0c;其大小有个最大值&#xff0c;并不会无限放大。 这种实现的原理是在Shader中&#xff0c;不断根据摄像机近平面尺寸大…

使用kali进行抓包以及aircrack-ng跑包和hashcat跑包

文章目录 一、连接无线网卡二、抓取TCP握手包三、aircrack-ng跑包和hashcat跑包1.aircrack2.Hashcat 四、其他 环境&#xff1a; VMware Workstation 16 Pro kali-linux-2023.1 64位 python3.9.13 RT3070-USB无线网卡 一、连接无线网卡 1.首先按下winr打开运行窗口 2.输入…