生物信息学R分析工具包ggkegg的详细使用方法

ggkegg介绍

ggkegg 是一个用于生物信息学研究的工具,可以用于分析和解释基因组学数据,并将其与已知的KEGG数据库进行比较。ggkegg 是从 KEGG 获取信息并使用 ggplot2 和 ggraph 进行解析、分析和可视化的工具包,结合其他使用 KEGG 进行生物功能研究的软件包。该工具旨在利用图形语法来可视化 KEGG 的复杂组件。对于 Python,请使用 pykegg,结合 plotnine,它提供了几乎与 ggkegg 相同的功能,可以与诸如 gseapy、PyDESeq2 以及单细胞转录组分析库 scanpy 等软件包一起使用,进行类似的功能。

ggkegg 的基本使用方法:

  1. 安装和加载 ggkegg 包:首先,您需要确保已在 R 环境中安装了 ggkegg 包。可以使用 install.packages("ggkegg") 命令安装该包。然后,使用 library(ggkegg) 命令加载该包。

    # devtools::install_github("noriakis/ggkegg")
    library(ggkegg)
  2. 导入数据:将您的基因组学数据导入 R 环境。ggkegg 支持各种不同的基因组学数据格式,例如基因表达数据、基因注释文件等。

  3. 使用 ggkegg 函数: 使用 ggkegg() 函数来创建 ggplot2 图表,该函数需要传入两个参数:

    • data: 导入的数据集,例如基因表达矩阵或注释文件。
                Sample1  Sample2  Sample3
      Gene1     10       8        12
      Gene2     5        7        9
      Gene3     3        2        4
    • id: KEGG ID,用于指定您要分析的特定通路或代谢网络。
  4. 可视化结果:使用 ggplot2 函数对结果进行可视化。 ggkegg 返回一个具有不同图层的 ggplot2 图表,可以使用 ggplot2 提供的其他函数对其进行定制和修改。例如,您可以添加标题、修改颜色、添加标签等。

下面是一个简单示例,展示如何使用 ggkegg 创建一个基因表达通路图:

library(ggkegg)
library(ggplot2)# 导入基因表达数据
data <- read.table("gene_expression.txt", header = TRUE)# 使用 ggkegg 函数
kegg_plot <- ggkegg(data, id = "path:hsa05202")# 可视化结果
kegg_plot + labs(title = "Pathway Analysis", x = "Genes", y = "Expression") +scale_fill_manual(values = c("blue", "green", "red")) +theme_bw()

在这个示例中,我们首先加载 ggkegg 和 ggplot2 包。然后,我们导入一个基因表达矩阵,并使用 ggkegg() 函数创建一个基因表达通路图。最后,我们使用 ggplot2 函数进行进一步的定制和修改,例如添加标题、修改颜色和背景等。

 原网站介绍和使用:

Chapter 1 About | ggkegg (noriakis.github.io)

Pathway分析

提供 ggkegg 一个通路ID,它将获取信息,解析数据并生成 ggraph 对象。在其中,使用 parse_kgml 或 pathway 函数来返回 igraph 或 tbl_graph 对象。它可以用于 KEGG PATHWAY 数据库中列出的所有生物体中的通路。pathway 函数是一个核心函数,它下载并解析 KGML 文件。如果文件已经存在于当前工作目录中,则不会重新下载。该函数还提取包含在通路中的反应作为边。如果存在由 type=line 表示的节点,该函数将根据其坐标将这些节点转换为边。此转换是通过 process_line 函数执行的。

需要使用到的R软件包

library(ggkegg)
library(ggfx)
library(ggraph)
library(igraph)
library(clusterProfiler)
library(dplyr)
library(tidygraph)

igraph可视化样例1:

g <- ggkegg(pid="eco00270",convert_org = c("pathway","eco"),delete_zero_degree = TRUE,return_igraph = TRUE)
gg <- ggraph(g, layout="stress") 
gg$data$type |> unique()
#> [1] "map"      "compound" "gene"
gg + geom_edge_diagonal(aes(color=subtype_name,filter=type!="maplink"))+geom_node_point(aes(filter= !type%in%c("map","compound")),fill=gg$data[!gg$data$type%in%c("map","compound"),]$bgcolor,color="black",shape=21, size=4)+geom_node_point(aes(filter= !type%in%c("map","gene")),fill=gg$data[!gg$data$type%in%c("map","gene"),]$bgcolor,color="black",shape=21, size=6)+geom_node_text(aes(label=converted_name,filter=type=="gene"),repel=TRUE,bg.colour="white")+theme_void()

这个例子首先获取 eco00270 的信息并解析它,将通路和 eco 标识符转换,删除零度节点,并返回 igraph 对象。

KGML 中描述的 x 坐标、y 坐标、宽度和高度分别列为 x、y、width 和 height。基于这些信息,计算并将 xmin、xmax、ymin 和 ymax 存储在节点表中。

突出显示样例1

以突出显示代谢通路(ko01100)的示例,使用 M00021 的定义。highlight_module 函数接受 kegg_module 类对象,并返回哪些边涉及模块内的反应,以及哪些节点是参与反应的化合物的布尔值。请注意,这不会产生与 KEGG mapper 完全相同的输出。这会向 tbl_graph 添加新列,对于满足相应条件的节点和边,将其标记为 TRUE。

g <- pathway("ko01100") |> process_line() |>highlight_module(module("M00021")) |>mutate(compound=convert_id("compound"))g |> ggraph(x=x, y=y) +geom_node_point(size=1, aes(color=I(fgcolor),filter=fgcolor!="none" & type!="line"))+geom_edge_link(width=0.1, aes(color=I(fgcolor),filter=type=="line"& fgcolor!="none"))+with_outer_glow(geom_edge_link(width=1,aes(color=I(fgcolor),filter=fgcolor!="none" & M00021)),colour="red", expand=3)+with_outer_glow(geom_node_point(size=2,aes(color=I(fgcolor),filter=fgcolor!="none" & M00021)),colour="red", expand=3)+theme_void()

可视化突出显示样例2

 代码:

library(ggkegg)
library(ggfx)
library(igraph)
library(tidygraph)
library(dplyr)pathway("ko01100") |>process_line() |>highlight_module(module("M00021")) |>highlight_module(module("M00338")) |>ggraph(x=x, y=y) +geom_node_point(size=1, aes(color=I(fgcolor),filter=fgcolor!="none" & type!="line")) +geom_edge_link0(width=0.1, aes(color=I(fgcolor),filter=type=="line"& fgcolor!="none")) +with_outer_glow(geom_edge_link0(width=1,aes(color=I(fgcolor),filter=(M00021 | M00338))),colour="red", expand=5) +with_outer_glow(geom_node_point(size=1.5,aes(color=I(fgcolor),filter=(M00021 | M00338))),colour="red", expand=5) +geom_node_text(size=2,aes(x=x, y=y,label=graphics_name,filter=name=="path:ko00270"),repel=TRUE, family="sans", bg.colour="white") +theme_void()

基于ggraph样例:

代码:

g <- pathway("hsa04110")
pseudo_lfc <- sample(seq(0,3,0.1), length(V(g)), replace=TRUE)
names(pseudo_lfc) <- V(g)$nameggkegg("hsa04110",convert_org = c("pathway","hsa","ko"),numeric_attribute = pseudo_lfc)+geom_edge_parallel2(aes(color=subtype_name),arrow = arrow(length = unit(1, 'mm')), start_cap = square(1, 'cm'),end_cap = square(1.5, 'cm')) + geom_node_rect(aes(filter=.data$type == "group"),fill="transparent", color="red") +geom_node_rect(aes(fill=numeric_attribute,filter=.data$type == "gene")) +geom_node_text(aes(label=converted_name,filter=.data$type == "gene"),size=2.5,color="black") +with_outer_glow(geom_node_text(aes(label=converted_name,filter=converted_name=="PCNA"),size=2.5, color="red"),colour="white", expand=4) +scale_edge_color_manual(values=viridis::plasma(11)) +scale_fill_viridis(name="LFC") +theme_void()

在突出显示通路中多个数值时使用多个尺度样例:

使用 ggh4x,你可以使用 scale_fill_multi() 将多个值绘制在各自的比例尺上。在 stana 包的 plotKEGGPathway 中使用此功能进行物种内多样性分析。有关函数用法,请参考 ggh4x 网站和相关代码。

library(ggh4x)
test <- geneList[1:100]
names(test) <- paste0("hsa:",names(test))
g <- pathway("hsa04110") |> mutate(value1=node_numeric(test),value2=node_numeric(test),value3=node_numeric(test),value4=node_numeric(test))
res <- ggraph(g) + geom_node_rect(aes(value1=value1)) + geom_node_rect(aes(value2=value2, xmin=xmin+width/4))+geom_node_rect(aes(value3=value3, xmin=xmin+2*width/4))+geom_node_rect(aes(value4=value4, xmin=xmin+3*width/4))+overlay_raw_map() + theme_void() +scale_fill_multi(aesthetics = c("value1", "value2","value3", "value4"),name = list("Condition1","Condition2","Condition3","Condition4"),colours = list(scales::brewer_pal(palette = "YlGnBu")(6),scales::brewer_pal(palette = "RdPu")(6),scales::brewer_pal(palette = "PuOr")(6),scales::brewer_pal(palette = "RdBu")(6)),guide = guide_colorbar(barheight = unit(50, "pt")))
res

出图:

Module

模块信息可以获取并解析。支持对 DEFINITION 和 REACTION 的解析。对于定义,首先函数将定义分解为块,并使用 ggraph 和 tbl_graph 或使用 geom_text 和 geom_rect 进行文本本身的图形表示。通过调用 module 函数,创建 kegg_module 类对象。

使用到的包

library(ggkegg)
library(tidygraph)
library(dplyr)
mod <- module("M00004")
mod
#> M00004
#> Pentose phosphate pathway (Pentose phosphate cycle)

module函数创建一个 kegg_module 类的对象,该对象在其内部槽中存储了反应和定义的解析信息。通过将这个 kegg_module 对象提供给各种函数,可以执行与模块相关的各种操作。

可视化模块中的反应。请报告无法以正确方式解析的任何反应。

library(igraph)
mod <- module("M00004")
## Obtain reaction graph
reacg <- attr(mod, "reaction_graph") # or, get_module_attribute()
## Some edges are duplicate and have different reactions,
## so simplify
reacg |>convert(to_simple) |>activate(edges) |> mutate(reaction=lapply(.orig_data,function(x) paste0(unique(x[["reaction"]]),collapse=","))) |>ggraph()+geom_node_point()+geom_edge_parallel(aes(label=reaction), angle_calc = "along",label_dodge = unit(5,"mm"),label_colour = "tomato",arrow = arrow(length = unit(1, 'mm')),end_cap = circle(5, 'mm'),start_cap = circle(5, "mm"))+geom_node_text(aes(label=name), repel=TRUE,bg.colour="white", size=4)+theme_void()

出图

Network

解析 KEGG NETWORK 并以相同的方式绘制成网络。在这种情况下,使用 network 函数。

library(ggkegg)
library(tidygraph)
library(dplyr)
kne <- network("N00002")
kne
#> N00002
#> BCR-ABL fusion kinase to RAS-ERK signaling pathway

Combining multiple networks
合并多个网络

以下是获取多个网络、使用 graph_join 合并它们,并使用 plot_kegg_network 包装函数绘制它们的示例。network_graph 函数是一个根据字符串生成图形的函数。可以指定 definition 或 expanded 作为类型来生成图形。

kne <- network("N00385")  ## HCMV
kne2 <- network("N00366") ## HPV
one <- kne |> network_graph()
two <- kne2 |> network_graph()
two
#> # A tbl_graph: 6 nodes and 5 edges
#> #
#> # A rooted tree
#> #
#> # A tibble: 6 × 3
#>   name     network_name                          network_ID
#>   <chr>    <chr>                                 <chr>     
#> 1 E5       HPV E5 to EGFR-PI3K signaling pathway N00366    
#> 2 V-ATPase HPV E5 to EGFR-PI3K signaling pathway N00366    
#> 3 EGFR     HPV E5 to EGFR-PI3K signaling pathway N00366    
#> 4 PI3K     HPV E5 to EGFR-PI3K signaling pathway N00366    
#> 5 PIP3     HPV E5 to EGFR-PI3K signaling pathway N00366    
#> 6 AKT      HPV E5 to EGFR-PI3K signaling pathway N00366    
#> #
#> # A tibble: 5 × 4
#>    from    to type  subtype  
#>   <int> <int> <chr> <chr>    
#> 1     1     2 -|    reference
#> 2     2     3 -|    reference
#> 3     3     4 ->    reference
#> # ℹ 2 more rows
graph_join(one, two, by="name") |> plot_kegg_network()

通过使用 ggforce,可以绘制多个图表,显示哪些基因属于哪个网络。

kne3 <- network("N00485") ## EBV
kne4 <- network("N00030") ## EGF-EGFR-RAS-PI3K
three <- kne3 |> network_graph()
four <- kne4 |> network_graph()gg <- Reduce(function(x,y) graph_join(x,y, by="name"), list(one, two, three, four))
coln <- gg |> activate(nodes) |> data.frame() |> colnames() 
nids <- coln[grepl("network_ID",coln)]net <- plot_kegg_network(gg)
for (i in nids) {net <- net + ggforce::geom_mark_hull(alpha=0.2, aes(group=.data[[i]],fill=.data[[i]], x=x, y=y, filter=!is.na(.data[[i]])))
}
net + scale_fill_manual(values=viridis::plasma(4), name="ID")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/295501.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【常见的语法糖(详解)】

&#x1f7e9; 说几个常见的语法糖 &#x1f7e2;关于语法糖的典型解析&#x1f7e2;如何解语法糖&#xff1f;&#x1f7e2;糖块一、switch 支持 String 与枚举&#x1f4d9;糖块二、泛型&#x1f4dd;糖块三、自动装箱与拆箱&#x1f341;糖块四、方法变长参数&#x1f5a5;️…

测试开发体系介绍——测试体系介绍-L3

目录&#xff1a; 测试框架体系TDDDDTBDDATDD介绍 测试框架是什么&#xff1f;测试框架的价值&#xff1a;测试框架的收益&#xff1a;常见测试框架类型&#xff1a;TDDBDDBehaviorDrivenDevelopmentATDDAcceptanceTestDrivenDevelopmentMBTModelBasedTestingDDTDataDrivenTes…

Spring Boot + EasyUI 全屏布局(二)

一、创建一个Spring Boot EasyUI项目 Spring Boot EasyUI 创建第一个项目&#xff08;一&#xff09;_springboot整合easyui-CSDN博客 二、相关知识点总结 布局&#xff08;layout&#xff09;是有五个区域&#xff08;北区 north、南区 south、东区 east、西区 west 和中区…

Kafka集群架构原理(待完善)

kafka在zookeeper数据结构 controller选举 客户端同时往zookeeper写入, 第一个写入成功(临时节点), 成为leader, 当leader挂掉, 临时节点被移除, 监听机制监听下线,重新竞争leader, 客户端也能监听最新leader leader partition自平衡 leader不均匀时, 造成某个节点压力过大, …

data数据响应式

data数据响应式 所有在实例上挂载的属性&#xff0c;都可以在视图中直接使用 data中的数据&#xff0c;是经过“数据劫持”的&#xff0c;是“响应式数据” 响应式&#xff1a;修改数据&#xff0c;视图会自动更新 MV原理&#xff1a;其中一条线的原理&#xff0c;data响应式的…

关于redis单线程和IO多路复用的理解

首先&#xff0c;Redis是一个高性能的分布式缓存中间件。其复杂性不言而喻&#xff0c;对于Redis整体而言肯定不是只有一个线程。 我们常说的Redis 是单线程&#xff0c;主要是指 Redis 在网络 IO和键值对读写是采用一个线程来完成的&#xff0c;这也是 Redis 对外提供键值存储…

Android App程序应用未校验签名证书——————《风险等级高》

目录 应用签名未校验风险1、检测目的2、风险等级3、检测依据4、风险描述5、检测步骤6、结果描述7、解决方案7.1、Android 检验 APK 是否签名的代码7.2、检验APK签名 8、结尾 应用签名未校验风险 1、检测目的 检测App程序启动时是否校验签名证书。 防止App的盗版率。未进行签…

Python3 迭代器与生成器

迭代器 迭代是Python最强大的功能之一&#xff0c;是访问集合元素的一种方式。 迭代器是一个可以记住遍历的位置的对象。 迭代器对象从集合的第一个元素开始访问&#xff0c;直到所有的元素被访问完结束。迭代器只能往前不会后退。 迭代器有两个基本的方法&#xff1a;iter…

C/C++ 基础函数

memcpy&#xff1a;C/C语言中的一个用于内存复制的函数&#xff0c;声明在 string.h 中&#xff08;C是 cstring&#xff09; void *memcpy(void *destin, void *source, unsigned n);作用是&#xff1a;以source指向的地址为起点&#xff0c;将连续的n个字节数据&#xff0c;…

微服务之配置中心与服务跟踪

zookeeper 配置中心 实现的架构图如下所示&#xff0c;采取数据加载到内存方式解决高效获取的问题&#xff0c;借助 zookeeper 的节点监听机制来实现实时感知。 配置中心数据分类 事件调度&#xff08;kafka&#xff09; 消息服务和事件的统一调度&#xff0c;常用用 kafka …

基于阻塞队列下的生产者消费者模型(多线程)

目录 一、生产者消费者模型1.1 为何要使用生产者消费者模型1.2 生产者消费者模型优点1.3 基于BlockingQueue的生产者消费者模型1.4 C用queue模拟阻塞队列的生产消费模型1.4.1 makefile1.4.2 BlockQueue.hpp1.4.3 LockGuard.hpp1.4.4 Task.hpp1.4.5 main.cc 二、Linux多线程内容…

1854_bash中利用管道进行批量参数传递以及由此实现简单的代码行数统计

Grey 全部学习内容汇总&#xff1a; GreyZhang/bash_basic: my learning note about bash shell. (github.com) 1854_bash中的参数传递以及利用bash进行简单的代码行数统计 有时候需要处理多个文件&#xff0c;把每一个文件作为参数传递给某一个程序。这时候可以用到 xargs&…