【开放集检测】OpenGAN: Open-Set Recognition via Open Data Generation 论文阅读

文章目录

  • 英语积累
  • 为什么使用GAN系列网络进行开放集检测
  • 摘要
  • 1. 前言
  • 2. 相关工作
    • 开集检测
    • 基于GAN网络的开集检测
    • 基于暴露异常数据的开集检测
  • 3. OpenGAN
    • 3.1 公式建模
      • 3.1.1 二分类方法
        • 存在问题
        • 如何解决
      • 3.1.2 使用合成数据
        • 存在问题
        • 如何解决
      • 3.1.3 OpenGAN
      • 3.1.4 模型验证
    • 3.2 先前基于GAN方法的总结
      • 3.2.1 生成器vs判别器
      • 3.2.2 Features vs. Pixels
      • 3.2.3 Classification vs. Reconstruction

英语积累

  1. Machine learning systems that operate in the real openworld invariably encounter test-time data that is unlike training examples, such as anomalies or rare objects that were insufficiently or even never observed during training. invariably:一贯的
  2. … can be crisply formulated as … 可以被很清晰的定义/表述为
  3. an elegant idea is to… 一个绝佳的方法是…

为什么使用GAN系列网络进行开放集检测

综述:Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review

  1. GAN网络可以学习数据分布
    GAN的基本思想是通过让两个神经网络相互对抗,从而学习到数据的分布。其中一个神经网络被称为生成器(Generator),它的目标是生成与真实数据相似的假数据;另一个神经网络被称为判别器(Discriminator),它的目标是区分真实数据和假数据。两个网络相互对抗,不断调整参数,从而最终生成具有高质量和多样性的假数据。

  2. GAN网络有产生新数据的能力,可以大大缓解新颖类检测中缺少新颖类别数据的情况。

摘要

开放集现阶段两大方法:

  1. 利用一些例外(异常)数据作为开放集,训练一个闭集VS开放集的二分类检测器
  2. 使用GAN网络无监督学习闭集数据分布,使用该判别器作为开放集的似然函数

两个方法的缺陷:

  1. 作为开放集使用的异常数据无法穷尽现实世界的所有可能的未知值
  2. GAN网络训练过程不稳定

解决: 提出OpenGAN

  • 使用对抗合成的假数据填充可用的真实开放集训练数据
  • 闭集k-ways的特征基础上建立判别器

1. 前言

在这里插入图片描述

算法演变过程:

  1. 使用GAN网络生成fake data,训练一个判别 close data 和 fake data 的二分类判别器;
  2. 在训练时使用一些真实世界中的离群数据(outlier data) 可以增强网络性能,即训练一个判别close data和open data的判别器;
  3. O p e n G A N p i x OpenGAN^{pix} OpenGANpix: 结合GAN产生的fake data并且使用真实世界中的outlier data来训练判别器
  4. O p e n G A N f e a OpenGAN^{fea} OpenGANfea : 不再使用图片的RGB像素进行训练,而是使用off-the-shelf (OTS) features来对GAN网络的训练;

off-the-shelf (OTS) features: 通过闭集检测的网络计算出来的特征

2. 相关工作

开集检测

一般来说,异常数据不会在训练阶段出现。

通用方法:

  1. 在闭集数据上训练k-ways闭集分类器,然后用于开放集检测
  2. 开发集成模型: 在闭集数据上训练k-ways闭集分类器 + 训练时使用合成的fake data进行开集检测,会牺闭集检测的准确率

基于GAN网络的开集检测

基于暴露异常数据的开集检测

3. OpenGAN

开放集检测步骤:

  1. 把测试数据先分类:是开集还是闭集 (关键步骤)
  2. 对闭集进行K-ways分类

一般的开放集检测都会在训练时设置开放集数据不可见,但是有研究证明在训练阶段将一些异常数据作为开放集数据进行训练可以有限的提升检测性能;

但是由于很难产生覆盖开放世界的训练集数据,而且分类器可能会在异常数据上发生过拟合,因此提出OpenGAN

OpenGAN优势:使用GAN网络产生假数据作为开放集数据的训练集去欺骗分类器

3.1 公式建模

3.1.1 二分类方法

给定一个二元分类器D,它的训练目标是将输入样本分为闭集(closed-set)和开集(open-set)两个类别。

D c l o s e d ( x ) D_{closed}(x) Dclosed(x):在闭集上的数据分布
D o p e n ( x ) D_{open}(x) Dopen(x):在开放集上的数据分布(不属于闭集)

m a x D E x ∼ D c l o s e d [ l o g D ( x ) ] + λ o ⋅ E x ∼ D o p e n [ l o g ( 1 − D ( x ) ) ] max_D E_{x∼D_{closed}} [logD(x)] + λo · E_{x∼D_{open}} [log(1−D(x))] maxDExDclosed[logD(x)]+λoExDopen[log(1D(x))]

  • D ( x ) D(x) D(x):这表示分类器D对于给定输入样本x的输出。它表示样本属于闭集类别的概率。也就是说,D(x)是模型对于输入样本属于闭集的估计概率。

  • E x ∼ D c l o s e d [ l o g D ( x ) ] E_{x∼D_{closed}} [logD(x)] ExDclosed[logD(x)]:这是第一项,表示对于从闭集数据中抽取的样本x,将其输入到分类器D中,并计算其对数概率logD(x),然后对所有闭集样本取平均。这一项鼓励分类器正确地对闭集样本进行分类,即将闭集样本的概率估计尽可能地提高。

  • E x ∼ D o p e n [ l o g ( 1 − D ( x ) ) ] E_{x∼D_{open}} [log(1−D(x))] ExDopen[log(1D(x))]:这是第二项,表示对于从开集数据中抽取的样本x,将其输入到分类器D中,并计算其对数概率log(1−D(x)),然后对所有开集样本取平均。这一项鼓励分类器正确地将开集样本排除在闭集之外,即将开集样本的概率估计尽可能地降低。

  • λ o λo λo:这是一个超参数,用于调节第二项(开集样本)相对于第一项(闭集样本)的权重。通过调整λo的值,可以控制分类器在训练过程中对于闭集和开集样本的重视程度。

存在问题

二分类方法的有效性取决于开集训练样本是否能够代表分类器在测试时遇到的开集数据。 如果开集训练样本不能充分涵盖开放世界数据中的变化和多样性,那么分类器在面对未见过的开集样本时可能表现不佳。

如何解决

使用GAN网络生成数据。

3.1.2 使用合成数据

  • G ( z ) G(z) G(z) : 一个可以生成图像的生成网络,生成器网络 G 接收从高斯正态分布中随机采样得到的噪声输入 z,并使用这个噪声向量生成合成的图像。
    这些合成图像可以被视为额外的负例或开放集样本,然后将它们添加到用于训练分类器D的训练数据池中。

  • D ( D i s c r i m i n a t o r ) D(Discriminator) D(Discriminator): 判别器,负责判断输入的数据是真实的还是生成的。

为防止生成器网络 G 合成的图片过于简单,使用对抗性训练(adversarial training)的方法来训练生成器网络 G,以生成具有欺骗性的困难示例,使分类器 D 难以将其分类为开放集数据。

GAN的损失如下所示:
m i n G E z ∼ N [ l o g ( 1 − D ( G ( z ) ) ) ] min_G E_{z∼N} [ log (1 - D(G(z))) ] minGEzN[log(1D(G(z)))]

该损失函数的意思是,生成器G最小化判别器D对生成的合成数据不是开放集数据的分类概率;也就是说,生成器G试图生成合成数据,使得判别器D将其误判为开放集数据的概率最大化。 通过这个过程,生成器G学会生成更难以分辨的合成数据,从而提高了判别器D在面对开放集数据时的性能和鲁棒性。

存在问题

开放集判别是指判别器 D 能够正确识别已知类别的图像,并将未知类别的图像标记为“未知”或“开放集”。然而,如果生成器 G 生成的图像与已知类别的图像非常相似,判别器 D 可能会错误地将其分类为已知类别(close-set),而无法准确识别为开放集。

如何解决

设计一些技术或方法,使得生成器 G 不仅生成逼真的图像,还能生成具有一定挑战性的图像,使判别器 D 能够有效地进行开放集判别。
这样,判别器 D 就能够准确地将开放集的数据标记为“未知”,而不是错误地将其分类为已知类别。

3.1.3 OpenGAN

通过使用真实的开放集和封闭集数据,以及生成的开放集数据,对判别器D和生成器G进行联合训练。

OpenGAN方法采用了一种类似GAN的最小最大优化过程,同时优化判别器D和生成器G。 公式如下所示。

m a x D m i n G E x ∼ D c l o s e d [ l o g D ( x ) ] + λ o ⋅ E x ∼ D o p e n [ l o g ( 1 − D ( x ) ) ] + λ G ⋅ E z ∼ N [ l o g ( 1 − D ( G ( z ) ) ) ] max_D min_G E_{x∼D_{closed}} [logD(x)] + λ_o · E_{x∼D_{open}} [log(1−D(x))] + λ_G · E_{z∼N} [log(1 − D(G(z)))] maxDminGExDclosed[logD(x)]+λoExDopen[log(1D(x))]+λGEzN[log(1D(G(z)))]

  • E x ∼ D c l o s e d [ l o g D ( x ) ] E_{x∼D_{closed}} [logD(x)] ExDclosed[logD(x)] : 表示使用封闭集数据训练判别器D,使其正确区分封闭集数据。
  • E x ∼ D o p e n [ l o g ( 1 − D ( x ) ) ] E_{x∼D_{open}} [log(1−D(x))] ExDopen[log(1D(x))]:表示使用真实的开放集数据训练判别器D,使其将开放集数据识别为开放集。
  • E z ∼ N [ l o g ( 1 − D ( G ( z ) ) ) ] E_{z∼N} [log(1 − D(G(z)))] EzN[log(1D(G(z)))]:表示使用生成器G生成的假开放集数据训练判别器D,使其能够正确区分生成的假开放集数据。
  • λ o λ_o λo 控制了真实开放集数据对于训练的贡献,而 λ G λ_G λG 控制了生成器G生成的假开放集数据对于训练的贡献。

当没有真实的开放集训练样本时( λ o = 0 λ_o=0 λo=0),上述最小最大优化问题仍然可以训练一个用于开放集分类的判别器D。在这种情况下,训练OpenGAN等效于训练一个普通的GAN,并使用其判别器作为开放集的似然函数。

3.1.4 模型验证

由于对抗生成训练会导致判别器D无法区分闭集中的真实数据和由生成器G产生的fake image,因此需要使用真实的异常数据来进行模型的验证

3.2 先前基于GAN方法的总结

3.2.1 生成器vs判别器

之前的方法中主要是利用生成器生成图像来扩充训练集,但是该方法主要是利用判别器来判别闭集图像和开集图像。

3.2.2 Features vs. Pixels

直接利用features训练GAN网络比使用RGB图像的效果更好。

3.2.3 Classification vs. Reconstruction

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/295837.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

青少年CTF-qsnctf-A1-Misc-签到

题目环境: 题目难度:★题目描述:有没有可能,这个平台就是个题目? 一道杂项题 题目说的是这个平台就是题目 那么也就是说flag就在这个平台里面1.从高层次向低层次逐一排查 2.首先对平台首页进行排查进平台首页 第一种解…

nodejs+vue+ElementUi旅游网站的设计与实现073x3

本论文首先对地方旅游网站进行需求分析,从系统开发环境、系统目标、设计流程、功能设计等几个方面进行系统的总体设计,开发出本基于VUE的地方旅游网站,该系统将采用B/S结构模式,使用Vue和ElementUI框架搭建前端页面,后…

AI绘画中VAE压缩图像

介绍 在Stable Diffusion中,所有的去噪和加噪过程并非在图像空间直接进行,而是通过VAE模块将图像编码到一个低维空间。 这个低维空间的“分辨率”低于原始图像空间,有利于快速地完成加噪和去噪过程。 最后再将编码空间中的噪声表示解码恢复为图像空间,完成去噪或加噪操作。 …

安装@vue/cli时候,升级版本造成冲突的解决方法

问题:原来是2.X版本,想要升级到4.5.9版本就出错了 npm install -g vue/cli4.5.9错误原因:之前安装过vue的2.X版本,导致冲突的文件没有被正确删除 解决方法:安装且覆盖原来存在的文件 npm install -g vue/cli4.5.9 -…

Web前端复习

一、随堂练习 1.小题 margin vanish:border和inline-block都可以形成bfc二维数组转置:res[i] [];函数的不同声明定义: 有变量名字的函数,即便后面声明了同样的,以函数表达式为主;定义,运行。再…

飞天使-k8s知识点6-kubernetes证书更新

文章目录 查看证书有效期注释haproxy 的,然后进行重启haproxy 查看证书有效期 kubeadm alpha certs check-expiration 查看证书信息CERTIFICATE EXPIRES RESIDUAL TIME CERTIFICATE AUTHORITY EXTERNALLY MANAGED admin.conf …

前端-如何用echarts绘制含有多个分层的波形图

一、效果图展示 先展示一下实际的效果图 用户选择完需要的波形参数字段之后,页面开始渲染图表,有几个参数就要渲染几个grid,也就是几行波形。 二、绘制逻辑 拿到所选的参数数据之后 1.首先是给横坐标轴的里程-数据注入 2.修改tooltip&am…

5.OpenResty系列之深入理解(一)

本文基于Centos8进行实践,请读者自行安装OpenResty。 1. 内部调用 进入默认安装路径 cd /usr/local/openresty/nginx/conf vim nginx.conflocation /sum {# 只允许内部调用internal;content_by_lua_block {local args ngx.req.get_uri_args()ngx.print(tonumber…

显卡之争!英伟达和AMD下场互掐!GPU霸主地位是否能保?

大家好,我是二狗。 英伟达和AMD这两家芯片巨头掐起来啦! 事情的起因是,两周前AMD董事会主席兼CEO苏姿丰在一场活动中发布了用于生成式AI和数据中心的新一代Intinct MI300X GPU芯片加速卡。 单单发布显卡没啥问题,但是AMD声称MI300…

1857_什么是AEC-Q100认证

Grey 全部学习内容汇总: GitHub - GreyZhang/g_hardware_basic: You should learn some hardware design knowledge in case hardware engineer would ask you to prove your software is right when their hardware design is wrong! 1857_什么是AEC-Q100认证 经…

生成式AI大爆发,2024年人工智能3大发展趋势预测

人工智能(AI)多年来一直是技术界讨论的热门话题,但在2023年,它完全抓住了大众的注意力和想象力。ChatGPT和类似的技术让外行人也能接触到人工智能,生成式AI以前所未有的速度从小众走向主流。在大家都普遍认为AI存在着能力局限性的情况下&…

天文与计算机:技术的星辰大海

天文与计算机:技术的星辰大海 一、引言 在人类的历史长河中,天文学与计算机技术这两个领域似乎相隔甚远,然而在科技的推动下,它们却逐渐走到了一起,为人类对宇宙的探索开辟了新的道路。天文观测的复杂度与数据量随着…