深度学习(八):bert理解之transformer

1.主要结构

transformer 是一种深度学习模型,主要用于处理序列数据,如自然语言处理任务。它在 2017 年由 Vaswani 等人在论文 “Attention is All You Need” 中提出。

Transformer 的主要特点是它完全放弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),而是完全依赖于注意力机制(Attention Mechanism)来捕捉输入序列中的模式。

Transformer 的主要组成部分包括:
在这里插入图片描述

1.自注意力机制(Self-Attention):自注意力机制能够处理序列数据,并且能够关注到序列中的任何位置,从而捕捉到长距离的依赖关系。

2.位置编码(Positional Encoding):由于 Transformer 没有循环和卷积操作,所以需要额外的位置编码来捕捉序列中的顺序信息。

3.编码器和解码器(Encoder and Decoder):Transformer 模型由编码器和解码器组成。编码器用于处理输入序列,解码器用于生成输出序列。编码器和解码器都是由多层自注意力层和全连接层堆叠而成。

2.自注意力机制

个人理解就是把字符编码后通过公式相乘变为另一个向量。

通过关注X中的词嵌入,我们在Y中生成了复合嵌入(加权平均值)。例如,Y中的dog嵌入是X中的the、dog和ran嵌入的组合,权重分别为0.2、0.7 和0.1。

构建词嵌入如何帮助模型实现理解语言的最终目标?要完全理解语言,仅仅理解组成句子的各个单词是不够的;还需要理解组成句子的各个单词。模型必须理解单词在句子上下文中如何相互关联。注意力机制通过形成模型可以推理的复合表示,使模型能够做到这一点。例如,当语言模型尝试预测句子“the runningdog was ___”中的下一个单词时,除了单独的“running ”或“dog”概念之外,模型还应该理解“runningdog”的复合概念;例如,走狗经常喘气,所以喘气是句子中合理的下一个词。在这里插入图片描述

2.1注意力可视化

通过bertviz可视化,bert模型记得替换

from bertviz import head_view, model_view
from transformers import BertTokenizer, BertModel
import imageio
model_version = 'D:\PycharmProjects\Multimodal emotion\model\\bert-base-chinese'
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version)
sentence_a = "好不好?燕子,你要开心,你要幸福,好不好?"
sentence_b = "开心啊,幸福。你的世界以后没有我了,没关系,你要自己幸福。"
inputs = tokenizer.encode_plus(sentence_a, sentence_b, return_tensors='pt')
print(inputs)
input_ids = inputs['input_ids']
print(input_ids)
token_type_ids = inputs['token_type_ids']
print(token_type_ids)
attention = model(input_ids, token_type_ids=token_type_ids)[-1]
print(attention)
sentence_b_start = token_type_ids[0].tolist().index(1)
print(sentence_b_start)
input_id_list = input_ids[0].tolist() # Batch index 0
print(input_id_list)
tokens = tokenizer.convert_ids_to_tokens(input_id_list) 
print(tokens)head_view(attention, tokens, sentence_b_start)

下面的可视化(在此处以交互形式提供)显示了示例输入文本引起的注意力。该视图将注意力可视化为连接正在更新的单词(左)和正在关注的单词(右)的线,遵循上图的设计。颜色强度反映注意力权重;接近 1 的权重显示为非常暗的线条,而接近 0 的权重显示为微弱的线条或根本不可见。用户可以突出显示特定单词以仅看到来自该单词的注意力。
在这里插入图片描述

升级一下,来讲多头注意力

它扩展了模型关注不同位置的能力。原来的编码 包含一些其他编码,但它可能由实际单词本身主导。如果我们翻译一个句子,比如“The Animal did not cross the street because it was tooert”,那么知道“it”指的是哪个单词会很有用。

它为注意力层提供了多个“表示子空间”。正如我们接下来将看到的,通过多头注意力,我们不仅拥有一组查询/键/值权重矩阵,而且拥有多组查询/键/值权重矩阵(Transformer 使用八个注意力头,因此我们最终为每个编码器/解码器提供八组,但是bert用12或24) 。这些集合中的每一个都是随机初始化的。然后,在训练之后,每个集合用于将输入嵌入(或来自较低编码器/解码器的向量)投影到不同的表示子空间中。

BERT 还堆叠了多个注意力层,每个注意力层都对前一层的输出进行操作。通过这种词嵌入的重复组合,BERT 能够在到达模型最深层时形成非常丰富的表示。我们接着写代码展示

model_view(attention, tokens, sentence_b_start)

由于注意力头不共享参数,因此每个头都会学习独特的注意力模式。我们在这里考虑的 BERT 版本——BERT Base——有 12 层和 12 个头,总共有 12 x 12 = 144 个不同的注意力机制。我们可以使用模型视图(此处以交互形式提供)同时可视化所有头部的注意力:

在这里插入图片描述
接着我们引入一些概念:

  • 查询 q:查询 向量q编码左侧正在关注的单词,即“查询”其他单词的单词。在上面的示例中,“on”(所选单词)的查询向量被突出显示。

  • 密钥k:密钥向量k对右侧所关注的单词进行编码。关键字向量和查询向量一起确定两个单词之间的兼容性分数。

  • q×k (elementwise):所选单词的查询向量与每个键向量之间的元素乘积。这是点积(元素乘积之和)的前身,包含在内是为了可视化目的,因为它显示了查询和键向量中的各个元素如何对点积做出贡献。

  • q·k:所选查询向量和每个关键 向量的缩放点积(见上文)。这是非标准化注意力分数。 Softmax:缩放点积的

  • Softmax。这会将注意力分数标准化为正值且总和为 1。
    代码

from bertviz.transformers_neuron_view import BertModel, BertTokenizer
from bertviz.neuron_view import showmodel_type = 'bert'
model_version = 'D:\PycharmProjects\Multimodal emotion\model\\bert-base-chinese'
model = BertModel.from_pretrained(model_version, output_attentions=True)
tokenizer = BertTokenizer.from_pretrained(model_version, do_lower_case=True)
show(model, model_type, tokenizer, sentence_a, sentence_b, layer=4, head=3)

该视图跟踪从左侧所选单词到右侧完整单词序列的注意力计算。正值显示为蓝色,负值显示为橙色,颜色强度代表大小。与前面介绍的注意力头视图一样,连接线表示相连单词之间的注意力强度。
在这里插入图片描述

2.2原理

回顾上面我所说的概念,运用如下公式
在这里插入图片描述
计算得分,多头是这样子的,就是增加了维度,把多头注意力拼接在一起
在这里插入图片描述
transformer的结构:
在这里插入图片描述
经历多头注意力再经过归一化层和前馈神经网络,每个head64维,因为有8个head,应该得到512维,但是bert有12个head,应该得到768维。
举个简单的例子来理解一下
这是利用transformer进行翻译
在这里插入图片描述
在这里插入图片描述
encoders是编码器,decoders是解码器。

3.Positional Encoding

一句话概括,Positional Encoding就是句子中词语相对位置的编码,让Transformer保留词语的位置信息。
t t t表示当前词语在句子中的位置,
p t → \overrightarrow{p_t} pt 表示的是该词语对应的位置编码,
d d d表示的是编码的维度。
公式如下
p t → = [ sin ⁡ ( ω 1 . t ) cos ⁡ ( ω 1 . t ) sin ⁡ ( ω 2 . t ) cos ⁡ ( ω 2 . t ) ⋮ sin ⁡ ( ω d / 2 . t ) cos ⁡ ( ω d / 2 . t ) ] d × 1 \left.\overrightarrow{p_t}=\left[\begin{array}{c}\sin(\omega_1.t)\\\cos(\omega_1.t)\\\\\sin(\omega_2.t)\\\cos(\omega_2.t)\\\\\vdots\\\\\sin(\omega_{d/2}.t)\\\cos(\omega_{d/2}.t)\end{array}\right.\right]_{d\times1} pt = sin(ω1.t)cos(ω1.t)sin(ω2.t)cos(ω2.t)sin(ωd/2.t)cos(ωd/2.t) d×1
从公式可以看出,其实一个词语的位置编码是由不同频率的余弦函数函数组成的,从低位到高位。
不同频率的sines和cosines组合其实也是同样的道理,通过调整三角函数的频率,我们可以实现这种低位到高位的变化,这样的话,位置信息就表示出来了。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296518.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nodejs+vue+ElementUi大学新生入学系统的设计与实现1hme0

采用B/S模式架构系统,开发简单,只需要连接网络即可登录本系统,不需要安装任何客户端。开发工具采用VSCode,前端采用VueElementUI,后端采用Node.js,数据库采用MySQL。 涉及的技术栈 1) 前台页面…

使用keytool查看Android APK签名

文章目录 一、找到JDK位置二、使用方法2.1 打开windows命令行工具2.2 查看签名 三、如何给APK做系统签名呢? 一、找到JDK位置 安卓AS之后,可选择继续安装JDK,如本文使用amazon版本默认位置:C:\Users\66176.jdks\corretto-1.8.0_342可通过自…

AWD认识和赛前准备

AWD介绍 AWD: Attack With Defence, 北赛中每个队伍维护多台服务器,服务器中存在多个漏洞,利 用漏洞攻击其他队伍可以进行得分,修复漏洞可以避免被其他队伍攻击失分。 一般分配Web服务器,服务器(多数为Linux)某处存在flag(一般在根目录下)&am…

RT-Thread启动过程

RT-Thread启动流程 一般了解一份代码大多从启动部分开始,同样这里也采用这种方式,先寻找启动的源头。 RT-Thread支持多种平台和多种编译器,而rtthread_startup()函数是RT-Thread规定的统一启动入口。 一般执行顺序是:系统先从启…

LVM-系统

# Linux常见的文件系统:ext4,xfs,vfat(linux和window都能够识别) mkfs.ext4 /dev/sdb1 # 格式化为ext4文件系统 mkfs.xfs /dev/sdb2 # 格式化为xfs文件系统 mkfs.vfat /dev/sdb1 # 格式化为vfat文件系统 mksw…

带您了解目前AI在测试领域能够解决的那些问题

AI在测试领域主要应用场景 话不多说,直接给结论: 接口测试脚本的自动生成和校验(依赖研发ai工具)测试用例的自动生成UI自动化测试脚本的自动生成和校验测试文档的自动生成快速了解初涉的业务领域 关于ai对研发和测试的整体影响…

MFC 视图窗口

目录 视图窗口概述 视图窗口的使用 视图窗口创建流程 命令消息 WM_COMMAND 处理顺序 对象关系 视图窗口概述 作用:提供了一个用于显示数据的窗口 关于视图窗口 视图类是用来展示用户,文档类是用来存储和管理数据视图窗口是覆盖掉框架窗口的客户区…

整数规划-割平面法

整数规划-割平面法 割平面法思想Gomorys割平面法原理实例 谨以此博客作为学习期间的记录。 割平面法思想 在之前,梳理了分支定界法的流程:分支定界法 除了分支定界法,割平面法也是求解整数规划的另一个利器。 我们已经知道,线性规划的可行域…

全新资源素材站源码 功能齐备 界面干净整洁

源码介绍 简单安装说明: 1、整站程序上传后台 2、然后导入数据库文件到数据库, 3、修改conf里面的conf的数据库名字及密码 4、配置伪静态 规则: location ~* \.(htm)$ { rewrite "^(.*)/(.?).htm(.*?)$" $1/index.php?$2…

【postgres】8、Range 类型

文章目录 8.17 Range 类型8.17.1 内置类型8.17.2 示例8.17.3 开闭区间8.17.4 无穷区间 https://www.postgresql.org/docs/current/rangetypes.html 8.17 Range 类型 Range 类型,可以描述一个数据区间,有明确的子类型,而且子类型应该能被排序…

IgH调试注意事项

1,不要在虚拟机测试,否则IgH无法收发数据包 现象:虚拟机中运行IgH master并绑定网卡后,主站由ORPHANED状态转换成IDLE状态,但无法收发数据报。 这是因为虚拟机用的是虚拟网卡,需通过iptables将数据包到转…

有关List的线程安全、高效读取:不变模式下的CopyOnWriteArrayList类、数据共享通道:BlockingQueue

有关List的线程安全 队列、链表之类的数据结构也是极常用的,几乎所有的应用程序都会与之相关。在java中, ArrayList和Vector都使用数组作为其内部实现。两者最大的不同在与Vector是线程安全的。 而ArrayList不是。此外LinkedList使用链表的数据结构实现…