使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(下篇)

原创 | 文 BFT机器人 

【原文链接】使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(上篇)

图片

05

Open3D可视化工具

  • 多功能且高效的3D数据处理:Open3D是一个全面的开源库,为3D数据处理提供强大的解决方案。它具有优化的后端架构,可实现高效的并行化,非常适合处理复杂的3D几何形状和算法;

  • 逼真的3D场景建模和分析:该库提供了用于场景重建和曲面对齐的专用工具,这些工具是创建精确3D模型的基础。它实现了基于物理的渲染(PBR),确保了这些3D场景的可视化不仅精确,而且非常逼真,大大增强了用户体验和工具在各种专业场景中的适用性;

  • 跨平台兼容性:它支持GCC5.X、XCode10+和VisualStudio2019等各种编译器,确保在Linux、OSX和Windows上无缝运行。它通过conda和pip提供简单的安装过程,方便用户快速轻松地进行设置。

图片

Open3D库的特性和功能

Open3D从头开始开发,专注于精简和有目的的依赖项选择,使其成为3D数据处理中轻量级但功能强大的工具。它的跨平台兼容性是一个关键功能,允许以最小的努力在各种操作系统上进行简单的设置和编译。其代码库的特点是简洁一致的样式透明的代码审查过程,反映了其对高质量软件工程实践的承诺。

Open3D结合了基于物理的渲染(PBR),将3D场景可视化的真实感提升到了一个新的水平,从而增加了可视化的真实感。其全面的3D可视化功能允许对3D数据进行交互式探索,从而增强用户的参与度和理解力。此外,它还包括Python绑定,为脚本编写和快速原型设计提供了用户友好且功能强大的界面,使其成为该领域新手和经验丰富的从业者的理想选择。

该库的实用性和有效性体现在它在众多已发表的研究项目中的使用以及在基于云的应用程序中的积极部署。Open3D鼓励并欢迎全球开源社区的贡献,营造协作和创新的开发环境。这使得Open3D不仅仅是一个用于3D数据处理的工具,更是一个在3D数据分析和可视化领域协同创新的平台。

06

3D点云可视化:代码演练

在本节中,我们将探讨可视化KITTI3DLiDAR传感器扫描数据集所涉及的各种过程,并生成其3D点云表示。您可以通过单击“下载代码”按钮来下载本文中的代码。

加载和读取2D深度图像

此代码片段定义了一个函数“load_depth_image”,该函数用于读取和处理2D深度图像。

#Readthe2DDepthImage

defload_depth_image(file_path):

#Loadthedepthimage

depth_image=plt.imread(file_path)

depth_image_scaling_factor=250.0

#Assumingthedepthimageisnormalized,wemayneedtoscaleittotheactualdistancevalues

#Thisscalingfactorisdataset-specific;you'llneedtoadjustitbasedontheKITTIdatasetdocumentation

depth_image*=depth_image_scaling_factor

returndepth_image

处理多个2D深度帧

此代码片段定义了一个函数“load_and_process_frames”,该函数旨在处理来自指定目录的一系列2D深度图像文件,将它们转换为点云数据。

defload_and_process_frames(directory):

point_clouds=[]

forfilenameinsorted(os.listdir(directory)):

iffilename.endswith('.png'):#CheckforPNGimages

file_path=os.path.join(directory,filename)

depth_image=load_depth_image(file_path)

point_cloud=depth_image_to_point_cloud(depth_image)

point_clouds.append(point_cloud)

returnpoint_clouds

将2D深度帧转换为3DLiDAR点云

“depth_image_to_point_cloud”功能旨在将2D深度图像转换为3D点云。

defdepth_image_to_point_cloud(depth_image,h_fov=(-90,90),v_fov=(-24.9,2.0),d_range=(0,100)):

#Adjustinganglesforbroadcasting

h_angles=np.deg2rad(np.linspace(h_fov[0],h_fov[1],depth_image.shape[1]))

v_angles=np.deg2rad(np.linspace(v_fov[0],v_fov[1],depth_image.shape[0]))

#Reshapinganglesforbroadcasting

h_angles=h_angles[np.newaxis,:]#Shapebecomes(1,1440)

v_angles=v_angles[:,np.newaxis]#Shapebecomes(64,1)

#Calculatex,y,andz

x=depth_image*np.sin(h_angles)*np.cos(v_angles)

y=depth_image*np.cos(h_angles)*np.cos(v_angles)

z=depth_image*np.sin(v_angles)

#Filteroutpointsbeyondthedistancerange

valid_indices=(depth_image>=d_range[0])&(depth_image<=d_range[1])

#Applythemasktoeachcoordinatearray

x=x[valid_indices]

y=y[valid_indices]

z=z[valid_indices]

#Stacktogetthepointcloud

point_cloud=np.stack((x,y,z),axis=-1)

returnpoint_cloud

模拟点云表示

“animate_point_clouds”函数是一个Python例程,旨在使用Open3D库对一系列3D点云进行动画处理。

defanimate_point_clouds(point_clouds):

vis=o3d.visualization.Visualizer()

vis.create_window()

#Setbackgroundcolortoblack

vis.get_render_option().background_color=np.array([0,0,0])

#Initializepointcloudgeometry

point_cloud=o3d.geometry.PointCloud()

point_cloud.points=o3d.utility.Vector3dVector(point_clouds[0])

vis.add_geometry(point_cloud)

frame_index=0

last_update_time=time.time()

update_interval=0.25#Timeinsecondsbetweenframeupdates

whileTrue:

current_time=time.time()

ifcurrent_time-last_update_time>update_interval:

#Updatepointcloudwithnewdata

point_cloud.points=o3d.utility.Vector3dVector(point_clouds[frame_index])

vis.update_geometry(point_cloud)

#Movetothenextframe

frame_index=(frame_index+1)%len(point_clouds)

last_update_time=current_time

vis.poll_events()

vis.update_renderer()

ifnotvis.poll_events():

break

vis.destroy_window()

运行可视化

最后一个代码片段提供了一个工作流,用于使用脚本前面定义的函数将一系列2D深度图像加载、处理和模拟到3D点云中。

#Directorycontainingthedepthimagefiles

directory='archive/2011_09_30_drive_0028_sync/2011_09_30_drive_0028_sync/2011_09_30/2011_09_30_drive_0028_sync/velodyne_points/depth_images'

#Loadandprocesstheframes

point_clouds=load_and_process_frames(directory)

#Simulatethepointclouds

animate_point_clouds(point_clouds)

图片

StreetVelodyne3DLiDARPOV–模拟1

图片

StreetVelodyne3DLiDAR侧视图–模拟2

07

3DLiDAR与2D深度帧的比较

现在让我们比较一下2D深度图和3D点云模拟,这涉及了解它们如何表示空间数据的根本差异。

2D深度图本质上是二维图像,其中每个像素的值表示从传感器到沿直接视线最近的表面点的距离。深度图类似于灰度图像,其中不同的阴影对应于不同的距离。与3D点云相比,通常需要更少的计算能力来处理,它们与标准图像处理技术和算法更兼容。虽然它们提供了有价值的距离信息,但它们可能会丢失有关场景中对象的空间排列和关系的上下文。

相比之下,3D点云是三维坐标系中点的集合。点云中的每个点都代表对象表面的一小部分,从而提供更全面和空间准确的场景表示。处理点云通常需要更多的计算资源。它们需要专门的算法来完成分割、对象识别和3D重建等任务,它们还提供更详细、更准确的空间和物体几何表示,更适合需要高保真空间数据的任务。

图片

输入2D深度图与3D点云模拟的比较

08

未来的工作和改进

可视化技术的潜在改进,特别是在自动驾驶应用的3D点云数据方面,包括旨在提高清晰度准确性用户交互的广泛进步。其中的关键是增强实时处理能力,能够更快、更有效地解释对自动驾驶汽车即时决策至关重要的数据。集成人工智能和机器学习算法可以实现更智能的可视化,促进自动特征检测、异常识别和预测分析。提高点云的分辨率可以捕获更精细的环境细节,这对于精确的物体检测和场景解释至关重要。

色彩映射和纹理技术的进步可以提供更逼真、信息更丰富的可视化效果,尤其是在将LiDAR数据与相机图像集成以创建纹理丰富的3D模型时。开发交互式可视化工具将使用户能够更直观地探索和分析3D点云数据,从而增强那些没有专业知识的人的可用性。增强现实和虚拟现实技术的结合可以提供身临其境的3D环境,从而更直观地理解复杂的数据集。

除此之外,实施先进的降噪和数据过滤技术对于提高可视化的清晰度至关重要,有助于准确解释复杂场景。解决可扩展性和大数据管理问题将能够在不影响性能的情况下处理大量数据集,这对于分析广阔的区域或延长的时间范围至关重要。可定制的可视化选项,满足各种用户需求和偏好,包括可调整的视点和渲染样式,将增强这些工具的实用性和可访问性。最后,确保这些可视化工具可以在包括移动设备在内的不同平台上访问,并且对广泛的用户群友好,这将大大扩大其适用性和影响。

若您对该文章内容有任何疑问,请与我们联系,我们将及时回应。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297105.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MOSFET管驱动设计细节,波形分析

MOSFET管驱动设计细节,波形分析 Chapter1 MOSFET管驱动设计细节,波形分析MOSFET驱动芯片的内部结构MOS驱动电路设计需要注意的地方MOS管驱动电路参考MOS管驱动电路的布线设计常见的MOS管驱动波形高频振铃严重的毁容方波又胖又圆的肥猪波打肿脸充正弦的生于方波他们家的三角波大…

企业知识库在跨地域团队协作中的价值

随着全球化进程的不断加速&#xff0c;越来越多的企业开始面临跨地域协作的挑战。在这种背景下&#xff0c;企业知识库作为一种重要的知识管理工具&#xff0c;对于提高团队协作效率、促进知识共享与创新具有不可替代的价值。接下来就说一下知识库在跨地域团队协作中的重要性及…

条款 10:令 operator= 返回一个指向 *this 的引用

赋值的一个有趣之处在于&#xff0c;可以将它们串在一起: int x, y, z; x y z 15; // 将赋值运算串起来// x (y (z 15));实现这种操作的方式是&#xff0c;赋值操作返回一个指向左侧参数的引用。 自定义的类&#xff0c;实现赋值操作符时应该遵循这个约定&#xff1a; …

Tauri:构建高效安全的桌面应用程序 | 开源日报 No.124

tauri-apps/tauri Stars: 64.6k License: Apache-2.0 Tauri 是一个开源项目&#xff0c;它可以通过 Web 前端构建更小、更快和更安全的桌面应用程序。 该项目具有以下优势和特点&#xff1a; Tauri 可以帮助用户构建桌面应用程序&#xff0c;并使用 web 前端技术进行界面设计…

基于javaSpringbootmysql的小型超市商品展销系统01635-计算机毕业设计项目选题推荐(免费领源码)

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化&#xff0c;电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流&#xff0c;人类发展的历史正进入一个新时代。在现实运用中&#xff0c;应用软件的工作…

自定义类型:结构体,枚举,联合(2)

2. 位段 2.1 什么是位段 位段的声明和结构是类似的&#xff0c;有两个不同&#xff1a; 1.位段的成员必须是 int、unsigned int 或signed int 。 2.位段的成员名后边有一个冒号和一个数字。 比如&#xff1a; struct A {int _a:2;int _b:5;int _c:10;int _d:30; };A就是一…

人工智能:从基础到前沿

人工智能&#xff1a;从基础到前沿 引言 当我们谈论“人工智能”&#xff08;AI&#xff09;时&#xff0c;我们其实是在谈论一个涵盖了众多学科、技术和应用的广阔领域。从计算机视觉到自然语言处理&#xff0c;从机器人学到深度学习&#xff0c;AI已经成为我们生活中不可或…

Windows漏洞利用开发——利用ROP绕过DEP保护

实验6 Windows漏洞利用开发 6.1实验名称 Windows漏洞利用开发 6.2实验目的 学习windows漏洞利用开发&#xff0c;使用kali linux相关工具对windows内目标程序进行漏洞利用 6.3实验步骤及内容 第三阶段&#xff1a;利用ROP绕过DEP保护 了解DEP保护理解构造ROP链从而绕过DEP…

Spring系列学习一、Spring框架的概论

Spring框架的概论 一、 Spring框架的起源与历史二、 Spring框架的核心理念与特点三、 Spring与其他框架的对比1、首先介绍下Spring与其平替的EJB的对比&#xff1a;2、接下来介绍下Spring与基于Java EE原生技术的对比3、Spring与Hibernate的对比4、Spring与Struts的对比 四、Sp…

数据资源工具断点续传及下载重试功能

我们可以利用数据资源工具下载各类卫星及矢量数据&#xff0c;具体方法见&#xff1a;Sentinel-2 下载&#xff08;其它数据操作方式类似&#xff09;&#xff0c;但在使用资源工具下载数据时可能会出现由于网络不稳定&#xff0c;网站关闭连接而造成下载的错误或中断。尤其是下…

2023安洵杯-秦岭防御军wp

reverse 感觉有点点简单## import base64 def ba64_decode(str1_1):mapp "4KBbSzwWClkZ2gsr1qAQu0FtxOm6/iVcJHPY9GNp7EaRoDf8UvIjnL5MydTX3eh"data_1 [0] * 4flag_1 [0] * 3for i in range(32, 127):for y in range(32, 127):for k in range(32, 127):flag_1[0]…

【Spring实战】02 配置多数据源

文章目录 1. 配置数据源信息2. 创建第一个数据源3. 创建第二个数据源4. 创建启动类及查询方法5. 启动服务6. 创建表及做数据7. 查询验证8. 详细代码总结 通过上一节的介绍&#xff0c;我们已经知道了如何使用 Spring 进行数据源的配置以及应用。在一些复杂的应用中&#xff0c;…