如何更好地理解和掌握 KMP 算法?

KMP算法是一种字符串匹配算法,可以在 O(n+m) 的时间复杂度内实现两个字符串的匹配。本文将引导您学习KMP算法,阅读大约需要30分钟。

1、字符串匹配问题

所谓字符串匹配,是这样一种问题:“字符串 P 是否为字符串 S 的子串?如果是,它出现在 S 的哪些位置?” 其中 S 称为主串;P 称为模式串。下面的图片展示了一个例子。

主串是那句著名的 “to be or not to be”,这里删去了空格。“no” 这个模式串的匹配结果是“出现了一次,从S[6]开始”;“ob”这个模式串的匹配结果是“出现了两次,分别从s[1]、s[10]开始”。按惯例,主串和模式串都以0开始编号。

字符串匹配是一个非常频繁的任务。例如,今有一份名单,你急切地想知道自己在不在名单上;又如,假设你拿到了一份文献,你希望快速地找到某个关键字所在的章节……凡此种种,不胜枚举。

我们先从最朴素的Brute-Force算法开始讲起。

2、Brute-Force

顾名思义,Brute-Force是一个纯暴力算法。说句题外话,我怀疑,“暴力”一词在算法领域表示“穷举、极低效率的实现”,可能就是源于这个英文词。

首先,我们应该如何实现两个字符串 A,B 的比较?所谓字符串比较,就是问“两个字符串是否相等”。最朴素的思想,就是从前往后逐字符比较,一旦遇到不相同的字符,就返回False;如果两个字符串都结束了,仍然没有出现不对应的字符,则返回True。实现如下:

既然我们可以知道“两个字符串是否相等”,那么最朴素的字符串匹配算法 Brute-Force 就呼之欲出了——

  • 枚举 i = 0, 1, 2 ... , len(S)-len(P)
  • 将 S[i : i+len(P)] 与 P 作比较。如果一致,则找到了一个匹配。

现在我们来模拟 Brute-Force 算法,对主串 “AAAAAABC” 和模式串 “AAAB” 做匹配:

这是一个清晰明了的算法,实现也极其简单。下面给出Python和C++的实现:

我们成功实现了 Brute-Force 算法。现在,我们需要对它的时间复杂度做一点讨论。按照惯例,记 n = |S| 为串 S 的长度,m = |P| 为串 P 的长度。

考虑“字符串比较”这个小任务的复杂度。最坏情况发生在:两个字符串唯一的差别在最后一个字符。这种情况下,字符串比较必须走完整个字符串,才能给出结果,因此复杂度是 O(len) 的。  

由此,不难想到 Brute-Force 算法所面对的最坏情况:主串形如“AAAAAAAAAAA...B”,而模式串形如“AAAAA...B”。每次字符串比较都需要付出 |P| 次字符比较的代价,总共需要比较 |S| - |P| + 1次,因此总时间复杂度是 O(|P|⋅(|S|−|P|+1))O(|P|\cdot (|S| - |P| + 1) ) . 考虑到主串一般比模式串长很多,故 Brute-Force 的复杂度是 O(|P|⋅|S|)O(|P| \cdot |S|) ,也就是 O(nm)的。这太慢了!

3、Brute-Force的改进思路

经过刚刚的分析,您已经看到,Brute-Force 慢得像爬一样。它最坏的情况如下图所示:

我们很难降低字符串比较的复杂度(因为比较两个字符串,真的只能逐个比较字符)。因此,我们考虑降低比较的趟数。如果比较的趟数能降到足够低,那么总的复杂度也将会下降很多。  要优化一个算法,首先要回答的问题是“我手上有什么信息?” 我们手上的信息是否足够、是否有效,决定了我们能把算法优化到何种程度。请记住:尽可能利用残余的信息,是KMP算法的思想所在

在 Brute-Force 中,如果从 S[i] 开始的那一趟比较失败了,算法会直接开始尝试从 S[i+1] 开始比较。这种行为,属于典型的“没有从之前的错误中学到东西”。我们应当注意到,一次失败的匹配,会给我们提供宝贵的信息——如果 S[i : i+len(P)] 与 P 的匹配是在第 r 个位置失败的,那么从 S[i] 开始的 (r-1) 个连续字符,一定与 P 的前 (r-1) 个字符一模一样!

需要实现的任务是“字符串匹配”,而每一次失败都会给我们换来一些信息——能告诉我们,主串的某一个子串等于模式串的某一个前缀。但是这又有什么用呢?

4、跳过不可能成功的字符串比较

有些趟字符串比较是有可能会成功的;有些则毫无可能。我们刚刚提到过,优化 Brute-Force 的路线是“尽量减少比较的趟数”,而如果我们跳过那些绝不可能成功的字符串比较,则可以希望复杂度降低到能接受的范围。

那么,哪些字符串比较是不可能成功的?来看一个例子。已知信息如下:

  • 模式串 P = "abcabd".
  • 和主串从S[0]开始匹配时,在 P[5] 处失配。

首先,利用上一节的结论。既然是在 P[5] 失配的,那么说明 S[0:5] 等于 P[0:5],即"abcab". 现在我们来考虑:从 S[1]、S[2]、S[3] 开始的匹配尝试,有没有可能成功?

从 S[1] 开始肯定没办法成功,因为 S[1] = P[1] = 'b',和 P[0] 并不相等。从 S[2] 开始也是没戏的,因为 S[2] = P[2] = 'c',并不等于P[0]. 但是从 S[3] 开始是有可能成功的——至少按照已知的信息,我们推不出矛盾。

带着“跳过不可能成功的尝试”的思想,我们来看next数组。

(1)next数组

next数组是对于模式串而言的。P 的 next 数组定义为:next[i] 表示 P[0] ~ P[i] 这一个子串,使得 前k个字符恰等于后k个字符 的最大的k. 特别地,k不能取i+1(因为这个子串一共才 i+1 个字符,自己肯定与自己相等,就没有意义了)。

上图给出了一个例子。P="abcabd"时,next[4]=2,这是因为P[0] ~ P[4] 这个子串是"abcab",前两个字符与后两个字符相等,因此next[4]取2. 而next[5]=0,是因为"abcabd"找不到前缀与后缀相同,因此只能取0。

如果把模式串视为一把标尺,在主串上移动,那么 Brute-Force 就是每次失配之后只右移一位;改进算法则是每次失配之后,移很多位,跳过那些不可能匹配成功的位置。但是该如何确定要移多少位呢?

在 S[0] 尝试匹配,失配于 S[3] <=> P[3] 之后,我们直接把模式串往右移了两位,让 S[3] 对准 P[1]. 接着继续匹配,失配于 S[8] <=> P[6], 接下来我们把 P 往右平移了三位,把 S[8] 对准 P[3]. 此后继续匹配直到成功。

我们应该如何移动这把标尺?很明显,如图中蓝色箭头所示,旧的后缀要与新的前缀一致(如果不一致,那就肯定没法匹配上了)!

回忆next数组的性质:P[0] 到 P[i] 这一段子串中,前next[i]个字符与后next[i]个字符一模一样。既然如此,如果失配在 P[r], 那么P[0]~P[r-1]这一段里面,前next[r-1]个字符恰好和后next[r-1]个字符相等——也就是说,我们可以拿长度为 next[r-1] 的那一段前缀,来顶替当前后缀的位置,让匹配继续下去!

您可以验证一下上面的匹配例子:P[3]失配后,把P[next[3-1]]也就是P[1]对准了主串刚刚失配的那一位;P[6]失配后,把P[next[6-1]]也就是P[3]对准了主串刚刚失配的那一位。

如上图所示,绿色部分是成功匹配,失配于红色部分。深绿色手绘线条标出了相等的前缀和后缀,其长度为next[右端]. 由于手绘线条部分的字符是一样的,所以直接把前面那条移到后面那条的位置。因此说,next数组为我们如何移动标尺提供了依据。接下来,我们实现这个优化的算法。

(2)利用next数组进行匹配

了解了利用next数组加速字符串匹配的原理,我们接下来代码实现之。分为两个部分:建立next数组、利用next数组进行匹配。

首先是建立next数组。我们暂且用最朴素的做法,以后再回来优化:

如上图代码所示,直接根据next数组的定义来建立next数组。不难发现它的复杂度是 O(m^2) 的。

接下来,实现利用next数组加速字符串匹配。代码如下:

如何分析这个字符串匹配的复杂度呢?乍一看,pos值可能不停地变成next[pos-1],代价会很高;但我们使用摊还分析,显然pos值一共顶多自增len(S)次,因此pos值减少的次数不会高于len(S)次。由此,复杂度是可以接受的,不难分析出整个匹配算法的时间复杂度:O(n+m)。

5、快速求next数组

终于来到了我们最后一个问题——如何快速构建next数组。

首先说一句:快速构建next数组,是KMP算法的精髓所在,核心思想是“P自己与自己做匹配”。

为什么这样说呢?回顾next数组的完整定义:

  • 定义 “k-前缀” 为一个字符串的前 k 个字符; “k-后缀” 为一个字符串的后 k 个字符。k 必须小于字符串长度。
  • next[x] 定义为: P[0]~P[x] 这一段字符串,使得k-前缀恰等于k-后缀的最大的k.

这个定义中,不知不觉地就包含了一个匹配——前缀和后缀相等。接下来,我们考虑采用递推的方式求出next数组。如果next[0], next[1], ... next[x-1]均已知,那么如何求出 next[x] 呢?

来分情况讨论。首先,已经知道了 next[x-1](以下记为now),如果 P[x] 与 P[now] 一样,那最长相等前后缀的长度就可以扩展一位,很明显 next[x] = now + 1. 图示如下。

刚刚解决了 P[x] = P[now] 的情况。那如果 P[x] 与 P[now] 不一样,又该怎么办?

如图。长度为 now 的子串 A 和子串 B 是 P[0]~P[x-1] 中最长的公共前后缀。可惜 A 右边的字符和 B 右边的那个字符不相等,next[x]不能改成 now+1 了。因此,我们应该缩短这个now,把它改成小一点的值,再来试试 P[x] 是否等于 P[now].

now该缩小到多少呢?显然,我们不想让now缩小太多。因此我们决定,在保持“P[0]~P[x-1]的now-前缀仍然等于now-后缀”的前提下,让这个新的now尽可能大一点。 P[0]~P[x-1] 的公共前后缀,前缀一定落在串A里面、后缀一定落在串B里面。换句话讲:接下来now应该改成:使得 A的k-前缀等于B的K-后缀的最大的k.

您应该已经注意到了一个非常强的性质——串A和串B是相同的!B的后缀等于A的后缀!因此,使得A的k-前缀等于B的k-后缀的最大的k,其实就是串A的最长公共前后缀的长度 —— next[now-1]!

来看上面的例子。当P[now]与P[x]不相等的时候,我们需要缩小now——把now变成next[now-1],直到P[now]=P[x]为止。P[now]=P[x]时,就可以直接向右扩展了。

代码实现如下:

应用摊还分析,不难证明构建next数组的时间复杂度是O(m)的。至此,我们以O(n+m)的时间复杂度,实现了构建next数组、利用next数组进行字符串匹配。

以上就是KMP算法。它于1977年被提出,全称 Knuth–Morris–Pratt 算法。最后附上KMP算法字符串匹配的Python和Java版代码:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297360.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu下docker安装,配置python运行环境

参考自: 1.最详细ubuntu安装docker教程 2.使用docker搭建python环境 首先假设已经安装了docker&#xff0c;卸载原来的docker 在命令行中运行&#xff1a; sudo apt-get updatesudo apt-get remove docker docker-engine docker.io containerd runc 安装docker依赖 apt-get…

什么是 Dubbo?它有哪些核心功能?

文章目录 什么是 Dubbo&#xff1f;它有哪些核心功能&#xff1f; 什么是 Dubbo&#xff1f;它有哪些核心功能&#xff1f; Dubbo 是一款高性能、轻量级的开源 RPC 框架。由 10 层模式构成&#xff0c;整个分层依赖由上至下。 通过这张图我们也可以将 Dubbo 理解为三层模式&…

Studio One正版多少钱 Studio One正版怎么购买

随着版权意识的增强&#xff0c;打击盗版的力度越来越大&#xff0c;现在网络上的盗版资源越来越少&#xff0c;资源少很难找是一方面&#xff0c;另一方面使用盗版软件不仅很多功能不能使用&#xff0c;而且很多盗版软件都被植入各种木马病毒&#xff0c;从而带来各种各样的风…

《工作、消费主义和新穷人》读书笔记

总结 全书前半段描写的是工作伦理论被推行的原因 &#xff0c;后半段探讨了福利国家和资本国家对于穷人的态度&#xff0c;最后描写了全球化下工作伦理从生产型社会过度到消费型社会的概念演变&#xff0c;和大众对于新穷人态度的转变。 启示 对于我的启示在前几章是最多的&…

[MySQL binlog实战] 增量同步与数据搜索~从入门到精通

学习基础知识&#xff0c;并落实到实际场景&#xff08;增量同步数据搜索&#xff09; 对基础知识不感兴趣的&#xff0c;可以直接跳到应用场景 文章目录 binlog是什么简介产生方式文件格式statementrowmixed 怎么办开启 binlog查看 binlog其他查看相关命令运维查看 binlog设置…

FHE简介

1. 引言 加密技术已经存在了数千年&#xff0c;用于相互发送秘密信息。例如&#xff0c;凯撒密码是最早的加密技术之一&#xff0c;可以追溯到公元前60年&#xff0c;其只由字母表中的字母交换组成。 随着互联网的出现&#xff0c;人们生成的私人数据量呈指数级增长&#xff…

图像识别SLIC、Haralick texture features(自备)

SLIC 简单线性迭代聚类(SLIC ),它采用k-means聚类方法来有效地生成超像素。 SLIC超像素分割详解&#xff08;一&#xff09;&#xff08;二&#xff09;&#xff08;三&#xff09;_超像素分割 样本-CSDN博客 超像素分割 & SLIC算法 & 使用示例_slic分割算法matlab-C…

12_图的进阶

12_图的进阶 一、有向图有向图的定义及相关术语有向图API设计有向图实现 二、拓扑排序检测有向图中的环检测有向环的API设计 基于深度优先的顶点排序顶点排序API设计 拓扑排序实现 三、加权无向图加权无向图的实现 四、最小生成树最小生成树定义及相关约定最小生成树原理树的性…

详解Vue3中的内置组件(transition)

本文主要介绍Vue3中的内置组件&#xff08;transition&#xff09;的普通写法和setup写法。 目录 一、在普通写法中使用内置组件&#xff08;transition&#xff09;二、在setup写法中使用内置组件&#xff08;transition&#xff09;三、使用注意项 在Vue3中&#xff0c;内置了…

精通推荐算法2:推荐系统分类(面试必备)

作者简介&#xff1a; 腾讯算法研究员。硕士毕业于中国科学院大学。在阿里和腾讯工作多年&#xff0c;拥有丰富的搜索和推荐算法经验。CSDN博客专家&#xff0c;原创文章100篇。发表专利15个&#xff0c;其中已授权6个。 系列文章&#xff0c;欢迎关注 精通推荐算法1&#x…

WT2605C音频蓝牙语音芯片:单芯片实现蓝牙+MP3+BLE+电话本多功能应用

在当今的电子产品领域&#xff0c;多功能、高集成度成为了一种趋势。各种产品都需要具备多种功能&#xff0c;以满足用户多样化的需求。针对这一市场趋势&#xff0c;唯创知音推出了一款集成了蓝牙、MP3播放、BLE和电话本功能的音频蓝牙语音芯片——WT2605C&#xff0c;实现了单…

JWT、session、token区别和实现

JWT、session、token区别和实现 这里需要用到Redis和JWT。 springboot版本是3.2.1 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency><…