Matlab仿真OOK、2FSK、2PSK、QPSK、4QAM在加性高斯白噪声信道中的误码率与归一化信噪比的关系

本文为学习所用,严禁转载。

本文参考链接
https://zhuanlan.zhihu.com/p/667382398 QPSK代码及高斯白噪声如何产生
https://ww2.mathworks.cn/help/signal/ref/butter.html 滤波器
https://www.python100.com/html/4LEF79KQK398.html 低通滤波器

本实验使用matlab仿真了五种数字调制方式(OOK、2FSK、2PSK、QPSK、4QAM)在加性高斯白噪声信道中的误码率,与归一化信噪比的关系。其中码元速率为100bps,码元个数为6666,OOK、BPSK载波频率为1KHz,2FSK两个载波频率分别为1KHz,500Hz。OOK、2FSK、2PSK均采用相干解调的方式。下面是各种调制解调方式下的误码率曲线。


clear all; 
close all; 
clc;
M = 6666; % 产生码元数
L = 100; % 每码元复制L次,方便观察
Ts = 0.01; % 每个码元的宽度,即码元的持续时间
Rb = 1/Ts; % 码元速率
dt = Ts/L; % 采样间隔
Fs = 1/dt; % 采样率
TotalT = M*Ts; % 总时间
t = 0:dt:TotalT-dt; % 时间
fc1 = 10*Rb; % 载波频率是码元速率的10倍,即载波的周期是码元周期的1/10
fc2 =  4*Rb; % 2fsk另一个载波的频率
SNR = -10:0.5:10; % 信噪比范围BER_ask2 = zeros(1,length(SNR)); % 2ASK误码率
BER_psk2 = zeros(1,length(SNR)); % BPSK误码率
BER_fsk2 = zeros(1,length(SNR)); % 2FSK误码率
BER_qpsk = zeros(1,length(SNR)); % QPSK误码率
BER_qam4 = zeros(1,length(SNR)); % 4QAM误码率% 产生二进制随机数据data_ask2 = randi([0,1],1,M);%产生0和1的二进制随机数data_fsk2 = randi([0,1],1,M);%产生0和1的二进制随机数data_psk2 = data_ask2*2 -1  ;%借助2ASK的随机数产生-1和1的二进制随机数data_qpsk = randi([0 3],M,1);%qpsk的码元范围是0~3data_qam4 = randi([0 3],M,1);%qam的码元范围是0~3% 产生单极性不归零矩形脉冲波形data_sample_ask2 = repmat(data_ask2,L,1); % 每个码元复制L次data_sample_ask2 = reshape(data_sample_ask2,1,M*L); % 产生单极性不归零矩形脉冲波形data_sample_psk2 = repmat(data_psk2,L,1); % 每个码元复制L次data_sample_psk2 = reshape(data_sample_psk2,1,M*L); % 产生双极性不归零矩形脉冲波形data_sample_fsk2 = repmat(data_fsk2,L,1); % 每个码元复制L次data_sample_fsk2 = reshape(data_sample_fsk2,1,M*L); % 产生单极性不归零矩形脉冲波形% 产生2ASK已调信号
carrier1 = cos(2*pi*fc1*t); % 载波1的正弦波
carrier2 = cos(2*pi*fc2*t); % 载波2的正弦波mod_ask2 = data_sample_ask2.*carrier1; % 2ASK的调制mod_psk2 = data_sample_psk2.*carrier1; % 2PSK的调制mod_fsk2 = data_sample_fsk2.*carrier1 + (1-data_sample_fsk2).*carrier2;% 2FSK的调制mod_qpsk = pskmod(data_qpsk,4,pi/4);% QPSK的调制mod_qam4 = qammod(data_qam4,4);% 4QAM的调制for i = 1:length(SNR)% 通过实时测量已调信号的功率,对已调信号加入高斯白噪声noise_ask2 = awgn (mod_ask2,SNR(i),'measured');noise_psk2 = awgn (mod_psk2,SNR(i),'measured');noise_fsk2 = awgn (mod_fsk2,SNR(i),'measured');noise_qpsk = awgn (mod_qpsk,SNR(i),'measured');noise_qam4 = awgn (mod_qam4,SNR(i),'measured');% 对接受信号进行带通滤波,滤除通频带外的噪声[b1,a1] = butter(4,[0.8*fc1 1.2*fc1]/(Fs/2),'bandpass'); % 设计带通滤波器[b2,a2] = butter(4,[0.8*fc2 1.2*fc2]/(Fs/2),'bandpass'); % 设计带通滤波器r_ask2 = filter(b1,a1,noise_ask2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_psk2 = filter(b1,a1,noise_psk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_fsk2_fc1 =  filter(b1,a1,noise_fsk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_fsk2_fc2 =  filter(b2,a2,noise_fsk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声% 对接收信号进行相干解调dem_ask2 = r_ask2.*carrier1;dem_psk2 = r_psk2.*carrier1;dem_fsk2_fc1 = 2*r_fsk2_fc1.*carrier1;dem_fsk2_fc2 = 2*r_fsk2_fc2.*carrier2;% 对解调信号进行低通滤波,滤除载波倍频分量,以获得码元coe_lowpass = fir1(6,2*fc1/Fs); % 低通滤波,将两倍的载波频率分量滤除lowpass_ask2 = filter(coe_lowpass,1,dem_ask2); lowpass_psk2 = filter(coe_lowpass,1,dem_psk2);lowpass_fsk2_fc1 = filter(coe_lowpass,1,dem_fsk2_fc1);lowpass_fsk2_fc2 = filter(coe_lowpass,1,dem_fsk2_fc2); % 对解调信号进行抽样判决sample_ask2 = lowpass_ask2(L/2:L:end); % 码元中点时间抽样sample_psk2 = lowpass_psk2(L/2:L:end); % 码元中点时间抽样sample_fsk2_fc1 = lowpass_fsk2_fc1(L/2:L:end); % 码元中点时间抽样sample_fsk2_fc2 = lowpass_fsk2_fc2(L/2:L:end); % 码元中点时间抽样decision_ask2 = (sample_ask2>0.5);decision_psk2 = (sample_psk2>0);decision_fsk2 = (sample_fsk2_fc1>sample_fsk2_fc2); decision_qpsk = pskdemod(noise_qpsk,4,pi/4);decision_qam4 = qamdemod(noise_qam4,4);% 计算误码个数和误码率error_ask2 = sum(xor(data_ask2,decision_ask2));error_psk2 = sum(xor(data_ask2,decision_psk2)); %这里因为PSK是ASK的随机序列产生的,所以和ASK比较error_fsk2 = sum(xor(data_fsk2,decision_fsk2)); error_qpsk = sum(xor(data_qpsk,decision_qpsk)); error_qam4 = sum(xor(data_qam4,decision_qam4)); BER_ask2(i) = error_ask2/M; % 2ASK误码率BER_psk2(i) = error_psk2/M; % 2PSK误码率BER_fsk2(i) = error_fsk2/M; % 2FSK误码率BER_qpsk(i) = error_qpsk/M; % QPSK误码率BER_qam4(i) = error_qam4/M; % 4QAM误码率
end
% 计算理论误码率
% Pe = zeros(1,length(SNR));
% for i = 1:length(SNR)
% r = 10^(SNR(i)/10);
% Pe(i) = qfunc(sqrt(r)); % 2ASK理论误码率公式
% end
% 绘制误码率曲线% semilogy横轴是线性,纵轴10倍一格
semilogy(SNR,BER_ask2,'b-d','LineWidth',2); % 2ASK仿真曲线
hold on;
semilogy(SNR,BER_psk2,'y-h','LineWidth',2); % BPSK仿真曲线
hold on;
semilogy(SNR,BER_fsk2,'g-o','LineWidth',2); % 2FSK仿真曲线
hold on;
semilogy(SNR,BER_qpsk,'k-*','LineWidth',2); % QPSK仿真曲线
hold on;
semilogy(SNR,BER_qam4,'r-s','LineWidth',2); % 4QAM仿真曲线
hold on;
% semilogy(SNR,Pe,'m-+'); % 理论曲线
% grid on;xlabel('归一化信噪比Eb/N0 (dB)');
ylabel('误码率BER');
legend('OOK','BPSK','2FSK','QPSK','4QAM');
title('误码率曲线');

经过上述仿真得到误码率曲线如下。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/298319.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Debezium发布历史20

原文地址: https://debezium.io/blog/2017/09/25/streaming-to-another-database/ 欢迎关注留言,我是收集整理小能手,工具翻译,仅供参考,笔芯笔芯. 将数据流式传输到下游数据库 九月 25, 2017 作者: Jiri…

《数字图像处理-OpenCV/Python》连载:图像的阈值处理

《数字图像处理-OpenCV/Python》连载:图像的阈值处理 本书京东 优惠购书链接 https://item.jd.com/14098452.html 本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html 第 9 章 图像的阈值处理 图像的阈值处理简单、直观,计算…

hash长度扩展攻击

作为一个信息安全的人,打各个学校的CTF比赛是比较重要的! 最近一个朋友发了道题目过来,发现有道题目比较有意思,这里跟大家分享下 这串代码的大致意思是: 这段代码首先引入了一个名为"flag.php"的文件&am…

AI 论文精读,中文视频讲解:剖析人工智能本质 | 开源日报 No.120

mli/paper-reading Stars: 21.8k License: Apache-2.0 深度学习论文精读是一个深度学习相关论文列表,包括计算机视觉、生成模型、自然语言处理等多个领域。 该项目的核心优势和特点包括: 提供了大量关于深度学习各领域热门文章内容对不同年份发表的有较…

遍历二叉树的Morris序

参考书:《程序员代码面试指南》 这种方法的好处在于,它做到了时间复杂度为O(n),额外空间复杂度为O(1)(只申请几个变量就可以完成整个二叉树的遍历)。 Morris遍历时cur访问节点的顺序就是morris序,可以在M…

61.SVN版本控制系统

SVN(Subversion)是一种集中式版本控制系统,它有一个中央仓库用于存储代码库的完整历史记录。相对于分布式版本控制系统(例如 Git),SVN 不支持本地仓库。 一、SVN 安装。 (1)在windo…

Dijkstra(迪杰斯特拉)算法总结

知识概览 Dijkstra算法适用于解决所有边权都是正数的最短路问题。Dijkstra算法分为朴素的Dijkstra算法和堆优化版的Dijkstra算法。朴素的Dijkstra算法时间复杂度为,适用于稠密图。堆优化版的Dijkstra算法时间复杂度为,适用于稀疏图。稠密图的边数m和是一…

swing快速入门(二十七)

注释很详细,直接上代码 上一篇 新增内容 1.为按钮指定图标 2. 列表框的并列 3.菜单项绑定快捷键 4.控件悬浮提示信息 5.菜单项设置小图标 6.五种布局风格右键选择切换 package swing21_30;import javax.swing.*; import java.awt.*; import java.awt.event.…

mysql原理--基于成本的优化

1.什么是成本 我们之前老说 MySQL 执行一个查询可以有不同的执行方案,它会选择其中成本最低,或者说代价最低的那种方案去真正的执行查询。不过我们之前对 成本 的描述是非常模糊的,其实在 MySQL 中一条查询语句的执行成本是由下边这两个方面组…

Android 13 - Media框架(26)- OMXNodeInstance(三)

上一节我们了解了OMXNodeInstance中的端口定义,这一节我们一起来学习ACodec、OMXNode、OMX 组件使用的 buffer 到底是怎么分配出来的,以及如何关联起来的。(我们只会去了解 graphic buffer的创建、input bytebuffer的创建、secure buffer的创…

状态管理概述

ArkTS UI的状态管理到这里就叙述完了,现在做一个概述,也可以认为是一个总结。 在声明式UI编程框架中,UI是程序状态的运行结果,用户构建了一个UI模型,其中应用的运行时的状态是参数。当参数改变时,UI作为返回…

【LeetCode:1954. 收集足够苹果的最小花园周长 | 等差数列 + 公式推导】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…