【如何破坏单例模式(详解)】

在这里插入图片描述

✅如何破坏单例模式

  • 💡典型解析
  • ✅拓展知识仓
    • ✅反射破坏单例
    • ✅反序列化破坏单例
    • ✅ObjectlnputStream
  • ✅总结
    • ✅如何避免单例被破坏
      • ✅ 避免反射破坏单例
      • ✅ 避免反序列化破坏单例

💡典型解析


单例模式主要是通过把一个类的构造方法私有化,来避免重复创建多个对象的。那么,想要破坏单例,只要想办注能够执行到这个私有的构造方法就行了。


✅拓展知识仓


一般来说做法有使用反射及使用反序列化都可以破坏单例。


我们先通过双重校验锁的方式创建一个单例,后文会通过反射及反序列化的方式尝试破坏这个单例。


package com.yangxiaoyuan;import java.io.Serializable;/*** Created by yangxiaoyuan on 23/12/24* 使用双重校验锁方式实现单例
*/public class Singleton implements Serializable {private volatile static Singleton singleton;private Singleton () {}public static Singleton getsingleton()  {if (singleton == null) {synchronized (Singleton.class)  {if (singleton == null) {singleton = new Singleton();}}}return singleton;}	
}

✅反射破坏单例


我们尝试通过反射技术,来破坏单例:


Singleton singleton1 = Singleton.getSingleton();//通过反射获取到构造函数
Constructor<Singleton> constructor = Singleton.class.getDeclaredConstructor();
//将构造函数设置为可访问类型
constructor.setAccessible(true);
//调用构造函数的newInstance创建一个对象
Singleton singleton2 = constructor.newInstance();
//判断反射创建的对象和之前的对象是不是同一个对象
System.out.println(s1 == s2);

以上代码,输出结果为false,也就是说通过反射技术,我们给单例对象创建出来了一个 "兄弟” 。


setAccessible(true),使得反射对象在使用时应该取消Java 语言访检查,使得私有的构造函数能够被访问。


✅反序列化破坏单例


我们尝试通过序列化+反序列化来破坏一下单例:


package com.yangxiaoyuan;import java.io.*;public class SerializableDemo1 {//为了便于理解,忽略关闭流操作及删除文件操作。真正编码时千万不要忘记//Exception直接抛出public static void main(String  args) throws IOException, ClassNotFoundException {//Write Obj to fileObjectOutputStream oos = new ObjectOutputStream(new File0utputStream("tempFile"));oos.writeObject(Singleton.getsingleton());//Read Obi from fileFile file = new File("tempFile");ObjectInputStream ois = new ObjectInputStream(new FileInputStream(file));Singleton newInstance = (Singleton) ois.readObject();//判断是否是同一个对象System.out.println(newInstance == Singleton.getSingleton());}
}//false

输出结构为false,说明:


通过对Singleton的序列化与反序列化得到的对象是一个新的对象,这就破坏了Singleton的单例性。


这里,在介绍如何解决这个问题之前,我们先来深入分析一下,为什么会这样?在反序列化的过程中到底发生了什么。


✅ObjectlnputStream


对象的序列化过程通过ObjectOutputStream和ObiectlnputStream来实现的,那么带着刚刚的问题,分析一下ObjectlnputStream 的 readobject 方法执行情况到底是怎样的。


为了节省篇幅,这里给出ObiectlnputStream的 readobject 的调用栈:


在这里插入图片描述

这里看一下重点代码,readOrdinaryObject 万法的代码片段: code 3


private Object readOrdinaryObject(boolean unshared) throws IOException {//此处省略部分代码Object obj;try {obj = desc.isInstantiable() ? desc.newInstance() : null;} catch (Exception ex)  {throw (IOException) new InvalidClassException(desc .forClass().getName(),
"unable to create instance").initCause(ex);}//此处省略部分代码if (obj != null && handles.lookupException(passHandle) == null && desc.hasReadResolveMethod()) {Object rep = desc.invokeReadResolve(obj);if (unshared && rep.getClass().isArray()) {rep = cloneArray(rep);}if (rep != obj) {handles.setObject(passHandle, obj = rep);}}return obj;
}

code 3 中主要贴出两部分代码。先分析第一部分:


code3.1


Object obj;try {obj = desc.isInstantiable() ? desc.newInstance() : null;} catch (Exception ex)  {throw (IOException) new InvalidClassException(desc .forClass().getName(),
"unable to create instance").initCause(ex);}

这里创建的这个obj对象,就是本方法要返回的对象,也可以暂时理解为是ObjectlnputStream的 readobject 返回的对象。


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/d9179a634e2a462dafeaf5c696d1a6f7.png#pic_center在这里插入图片描述


isInstantiable: 如果一个serializable/externalizable的类可以在运行时被实例化,那么该方法就返回true。针对serializable和externalizable我会在其他文章中介绍。




desc.newInstance:该方法通过反射的方式新建一个对象。


然后看一下 newInstance 的源码:


public T newInstance(Object ... initargs) throws InstantiationExceptionIllegalAccessException,
IllegalArgumentExceptionInvocationTargetException {if (!override) {if (!Reflection.quickCheckMemberAccess(clazz,modifiers)) {Class<?> caller = Reflection.getCallerClass();checkAccess(caller, clazz, nul1, modifiers);}}if ((clazz.getModifiers() & Modifier.ENUM) != 0) {throw new IllegalArgumentException("Cannot reflectively create enum objects");}ConstructorAccessor ca = constructorAccessor;         // read volatileif (ca == null) {ca = acquireConstructorAccessor();}@Suppresslarnings("unchecked")T inst = (T) ca.newInstance(initargs];return inst;
}

其中关键的就是 T inst = (T) ca.newInstance(initargs);这一步,这里实现的话在BootstrapConstructorAccessorlmpl中,实现如下:


public Object newInstance(Object[] args)
throws IllegalArgumentExceptionInvocationTargetException {try {return UnsafeFieldAccessorImpl.unsafe.allocateInstance(constructor.getDeclaringClass());} catch (InstantiationException e)  {throw new InvocationTargetException(e);}
}

可以看到,这里通过Java 的 Unsafe 机制来创建对象的,而不是通过调用构造函数。这意味着即使类的构造函数是私有的,反序列化仍然可以创建该类的实例,因为它不依赖于常规的构造过程。


So,到目前为止,也就可以解释,为什么序列化可以破坏单例?

答:序列化会通过Unsafe直接分配的方式来创建一个新的对象。

✅总结


在涉及到序列化的场景时,要格外注意他对单例的破坏。


✅如何避免单例被破坏


✅ 避免反射破坏单例


反射是调用默认的构造函数创建出来的,只需要我们改造下构造函数,使其在反射调用的时候识别出来对象是不是被创建过就行了:


private Singleton() {if (singleton != null) {throw new RuntimeException("单例对象只能创建一次...");}
}

✅ 避免反序列化破坏单例


解决反序列化的破坏单例,只需要我们自定义反序列化的策略就行了,就是说我们不要让他走默认逻辑一直调用至Unsafe创建对象,而是我们干预他的这个过程,干预方式就是在Singleton类中定义 readResolve ,这样就可以解决该问题:


package com.yangxiaoyuan;import java.io.Serializable;// 使用双重校验锁方式实现单例public class Singleton implements Serializable {private volatile static Singleton singleton;private Singleton (){}public static Singleton getSingleton()  {if (singleton == null) {synchronized (Singleton.class)  {if (singleton == null) {singleton = new Singleton();}}}return singleton;}private Object readResolve() {return singleton;}
}

还是运行以下测试类


package com.yangxiaoyuan;import java.io.*;public class SerializableDemo1 {//为了便于理解,忽略关闭流操作及删除文件操作。真正编码时千万不要忘记//Exception直接抛出public static void main(Stringl] args) throws IOException, ClassNotFoundException {//Write Obj to fileObjectOutputStream oos = new ObiectOutputStream(new File0utputstream("tempFile")):oos.writeObject(Singleton.getSingleton());//Read Obj from fileFile file = new File("tempFile");ObjectInputStream ois = new ObjectInputStream(new FileInputStream(file));Singleton newInstance = (Singleton) ois.readObject();//判断是否是同一个对象System.out.println(newInstance == Singleton.getSingleton());}
}//true

本次输出结果为true。具体原理,我们回过头继续分析code 3中的第二段代码:


if (obj != null &&handles.lookupException(passHandle) == null && desc.hasReadResolveMethod()) {Object rep = desc.invokeReadResolve(obj);if (unshared && rep.getClass().isArray()) {rep = cloneArray(rep);}if (rep != obj) {handles .setObject(passHandle, obj = rep);}
}

hasReadResolveMethod :如果实现了serializable 或者 externalizable接口的类中包含 readResolve 则返回true。


invokeReadResolve :通过反射的方式调用要被反序列化的类的readResolve方法。


所以,原理也就清楚了,只要在Singleton中定义readResolve方法,并在该方法中指定要返回的对象的生成策略,就可可以防止单例被破坏。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/300508.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据库系统概论】第3章-关系数据库标准语言SQL(3)

文章目录 3.5 数据更新3.5.1 插入数据3.5.2 修改数据3.5.3 删除数据 3.6 空值的处理3.7 视图3.7.1 建立视图3.7.2 查询视图3.7.3 更新视图3.7.4 视图的作用 3.5 数据更新 3.5.1 插入数据 注意&#xff1a;插入数据时要满足表或者列的约束条件&#xff0c;否则插入失败&#x…

WebRTC概念

定义 一个实时通信标准 通话原理 媒体协商 在WebRTC中&#xff0c;参与视频通讯的双方必须先交换SDP信息&#xff0c;获得一个都支持的编码格式 网络协商 目的&#xff1a;找到一条相互通讯的链路 做法&#xff1a;获取外网IP地址映射&#xff0c;通过信令服务器交换“网…

C语言学习day10:if语句

程序流程结构&#xff1a; C 语言支持最基本的三种程序运行结构:顺序结构、选择结构、循环结构。 顺序结构:程序按顺序执行&#xff0c;不发生跳转。选择结构:依据是否满足条件&#xff0c;有选择的执行相应功能。循环结构:依据条件是否满足&#xff0c;循环多次执行某段代码…

龙芯杯个人赛串口——做一个 UART串口——RS-232

文章目录 Async transmitterAsync receiver1. RS-232 串行接口的工作原理DB-9 connectorAsynchronous communicationHow fast can we send data? 2.波特率时钟生成器Parameterized FPGA baud generator 3.RS-232 transmitter数据序列化完整代码&#xff1a; 4.RS-232 receiver…

VS Code插件开发初步

文章目录 上手入口函数contributes 上手 欲善其事必先利其器&#xff0c;无论做什么开发&#xff0c;第一步肯定是下载工具链。VS Code开发主要用到两个东西&#xff0c;一个是项目的手脚架工具Yeoman&#xff0c;可通过yo来安装&#xff1b;另一个是VS Code的扩展时生成器gen…

机器视觉系统选型-避免畸变

在定位及高精度测量的系统中&#xff0c;镜头畸变的影响尤其重要 • 使用远心镜头 • 进行系统标定

微信小程序picker组件扩展选择时间到秒插件

创建插件seldatetime // 插件JS部分 Component({// 一些选项options: {// 样式隔离&#xff1a;apply-shared 父影响子&#xff0c;shared父子相互影响&#xff0c; isolated相互隔离styleIsolation:"isolated",// 允许多个插槽multipleSlots: true},// 组件的对外属…

前端项目重构的深度思考和复盘

摘要&#xff1a; 项目重构是每一家稳定发展的互联企业的必经之路, 就像一个产品的诞生, 会经历产品试错和产品迭代 一样, 随着业务或新技术的不断发展, 已有架构已无法满足更多业务扩展的需求, 所以只有通过重构来让产品“进化”, 才能跟上飞速发展的时代浪潮. 技术因素 早期…

人工智能:网络犯罪分子的驱动力

随着 2024 年的临近&#xff0c;是时候展望今年的网络安全状况了。由于网络犯罪日益复杂&#xff0c;预计到 2025 年&#xff0c;全球网络安全成本将增至 10.5 万亿美元。 人工智能的使用不断发展&#xff0c;网络犯罪分子变得越来越有创造力 我们注意到&#xff0c;联邦调查…

用C的递归函数求n!-----(C每日一编程)

用递归函数求n&#xff01; 有了上面这个递归公式就能写C代码了。 参考代码&#xff1a; int fac(int n) {if (n 1 || n 0)return 1;else return n * fac(n - 1); } void main() {int n;scanf("%d",&n);int f fac(n);printf("\n%d!%d\n", n, f); …

119. 杨辉三角 II(Java)

给定一个非负索引 rowIndex&#xff0c;返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0 输出: [1]示例 3: 输入: rowIndex 1 输出: [1,1]提示…

ARM Cortex-A学习(1):GIC(通用中断控制器)详解

文章目录 1 Cortex-A核中断1.1 处理器模式1.2 IRQ模式 2 GIC的操作2.1 CPU Interface2.2 Distributor GIC(通用中断控制器, Generic Interrupt Controller)是一种用于处理中断的硬件组件&#xff0c;它的主要功能是协调和管理系统中的中断请求&#xff0c;确保它们被正确地传递…