图像分割实战-系列教程1:语义分割与实例分割概述

1、图像分割任务概述

1.1 图像分割

分割任务就是在原始图像中逐像素的找到你需要的轮廓

如图分别是(物体检测)与(图像分割)两个任务的效果对比,实际上会比检测任务要稍微麻烦一些,将图像会分为几个区域把需要的单独拿出来,不需要的当成背景处理,分割也分为语义分割和实例分割。

1.2 语义分割

  • 语义分割就是把每个像素都打上标签(这个像素点是人,树,背景等)
  • 语义分割只区分类别,不区分类别中具体单位

1.3 实例分割

在右图中将五个人的轮廓都描绘出来了,但是没有把5个人区分出来,这就是一个基本的语义分割

实例分割不光要区别类别,还要区分类别中每一个个体,每一个个体都是不同的

往基本的要求做,就是可以做语义分割,往高级的做就是实例分割

和物体检测的任务对比呢,比如YOLO是将分类任务变成回归,找一些坐标点分别是什么。那分割任务呢?

2 语义分割损失函数解析

2.1 损失函数

  • 逐像素的交叉熵
  • 还经常需要考虑样本均衡问题
  • 交叉熵损失函数公式如下:

p o s w e i g h t = n u m n e g n u m p o s pos_{weight} = \frac{num_{neg}}{num_{pos}} posweight=numposnumneg
这里的 p o s w e i g h t pos_{weight} posweight是一个额外权重,是前景像素点和背景像素点的数量的比例值。

l o s s = − p o s w e i g h t ∗ y t r u e l o g ( y p r e d ) − ( 1 − y t r u e ) l o g ( y p r e d ) loss = -pos_{weight}*y_{true}log(y_{pred})-(1-y_{true})log(y_{pred}) loss=posweightytruelog(ypred)(1ytrue)log(ypred)
首先一张图像有几万几十万甚至更多个像素点,需要对每一个像素点都进行多分类任务,也就是逐像素进行交叉熵的过程。上式就是一个2分类交叉熵的公式再加上前面提到的额外权重

2.2 Focal loss

样本也由难易之分,就跟玩游戏一样,难度越高的BOSS奖励越高
− ( 1 − y p r e d ) γ ∗ y t r u e l o g ( y p r e d ) − y p r e d γ ∗ ( 1 − y t r u e l o g ( 1 − y p r e d ) ) -(1-y_{pred})^γ*y_{true}log(y_{pred})-y^γ_{pred}*(1-y_{true}log(1-y_{pred})) (1ypred)γytruelog(ypred)ypredγ(1ytruelog(1ypred))

正负样本的比例完全就是由数量决定的,每一个像素点都会去做交叉熵,都会产生一个损失值,像素点是不应该相同对待的,有些像素比较好处理,很明显是背景和前景的,难处理的就是轮廓上的,一个人去描边,边里面的好处理外面的也好处理,但是边上的不好处理。但是这些难处理的像素点应该要体现出比较高的重要性

在上面的公式中,Gamma通常设置为2,例如预测正样本概率0.95,那预测效果就非常好,也就是说这个像素处理的比较简单, ( 1 − 0.25 ) 2 = 0.0025 (1-0.25)^2=0.0025 (10.25)2=0.0025,0.0025也就意味着当前这个样本提供的损失值比较低,如果是0.5, ( 1 − 0.5 ) 2 = 0.25 (1-0.5)^2=0.25 (10.5)2=0.25,这个难度高一点,权重也就大一些。可以类似理解为错题本,想要学的更好得高分,错的题比较重要。这里就是对γ值的解释

再结合样本数量的权值就是Focal Loss:
− α ( 1 − y p r e d ) γ ∗ y t r u e l o g ( y p r e d ) − ( 1 − α ) ∗ y p r e d γ ∗ ( 1 − y t r u e l o g ( 1 − y p r e d ) ) -α(1-y_{pred})^γ*y_{true}log(y_{pred})-(1-α)*y^γ_{pred}*(1-y_{true}log(1-y_{pred})) α(1ypred)γytruelog(ypred)(1α)ypredγ(1ytruelog(1ypred))

3 IOU计算

3.1 IOU计算

多分类任务时:iou_dog = 801 /( true_dog + predict_dog - 801)

如图的混淆矩阵,左图中,横轴和纵轴分别为预测值和真实值,单独求某一个类别:真实值为狗的预测值也为狗就是做对的,为801个除以(实际总共有多少个狗的,再加上预测为狗的,再减去801)

看右图,交集就是801,并集就是绿色加上黄色的,上面的公式就是由于加了两次801所以要减去801

3.2 MIOU计算

IoU(Intersection over Union,交并比),下图中,左边是标签值,右边是预测值
Intersection 就是真实值和预测值的交集,Union就是真实值和预测值的并集,这两个值的比例
在这里插入图片描述

MIOU就是计算所有类别的平均值,一般当作分割任务评估指标
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/307969.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux安装常用的软件(jdk,MySQL,nginx)并完成对前后端项目的部署发布

linux软件安装: 安装方式介绍: 二进制发布包安装: 软件已经针对具体平台编译打包发布,只要解压,修改配置即可 rpm安装: 软件已经按照redhat的包管理规范进行打包,使用rpm命令进行安装&#xff0…

【软件测试】为bug而生

为什么定位问题如此重要? 可以明确一个问题是不是真的“bug” 很多时候,我们找到了问题的原因,结果发现这根本不是bug。原因明确,误报就会降低多个系统交互,可以明确指出是哪个系统的缺陷,防止“踢皮球”&…

【c语言】飞机大战(1)

提前准备好游戏要的素材,可以到爱给网去找,飞机大战我们需要的是一个我方战机图片,一个背景图,三个敌方战机的图,我方战机的图片,敌方战机的图片,并且将图片和.cpp放在同一文件夹下. 这里创建.…

uniapp门店收银,点击右边商品,商品会进入左边的购物车,并且,当扫码枪扫描商品条形码,商品也会累计进入购物车

效果&#xff1a; 代码&#xff1a; <template><view class"container"><view class"top" style"height: 10%; margin-bottom: 20rpx; box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.2);"><view class"box" style&q…

借贷协议 Tonka Finance:铭文资产流动性的新破局者

“Tonka Finance 是铭文赛道中首个借贷协议&#xff0c;它正在为铭文资产赋予捕获流动性的能力&#xff0c;并为其构建全新的金融场景。” 在 2023 年的 1 月&#xff0c;比特币 Ordinals 协议被推出后&#xff0c;包括 BRC20&#xff0c;Ordinals 等在内的系列铭文资产在包括比…

3d光学轮廓仪测微光学器件应用及其重要意义

微光学器件是光学器件的重要分支&#xff0c;为光学通信、光传感、光计算等领域的发展提供重要支撑。微光学器件具有尺寸小、功耗低、低成本等优势&#xff0c;可以于电子器件集成&#xff0c;实现更高效的数据传输和信号处理。未来&#xff0c;随着微纳加工技术的进一步发展&a…

智慧工地解决方案,智慧工地项目管理系统源码,支持大屏端、PC端、手机端、平板端

智慧工地解决方案依托计算机技术、物联网、云计算、大数据、人工智能、VR&AR等技术相结合&#xff0c;为工程项目管理提供先进技术手段&#xff0c;构建工地现场智能监控和控制体系&#xff0c;弥补传统方法在监管中的缺陷&#xff0c;最线实现项目对人、机、料、法、环的全…

华为服务器安装银河麒麟V10操作系统(IBMC安装)

iBMC是华为面向服务器全生命周期的服务器嵌入式管理系统。提供硬件状态监控、部署、节能、安全等系列管理工具&#xff0c;标准化接口构建服务器管理更加完善的生态系统。 服务器BMC IP&#xff1a;192.168.2.100 一、准备工作 1、确保本机和服务器BMC管理口在同一网络 2、银…

k8s的陈述式资源管理(命令行操作)

&#xff08;一&#xff09;k8s的陈述式资源管理 1、命令行&#xff1a;kubectl命令行工具——用于一般的资源管理 &#xff08;1&#xff09;优点&#xff1a;90%以上ce场景都可以满足 &#xff08;2&#xff09;特点&#xff1a;对资源的增、删、查比较方便&#xff0c;对…

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 &#xff08;…

树莓派 ubuntu20.04下 python调讯飞的语音API,语音识别和语音合成

目录 1.环境搭建2.去讯飞官网申请密钥3.语音识别&#xff08;sst&#xff09;4.语音合成&#xff08;tts&#xff09;5.USB声卡可能报错 1.环境搭建 #环境说明&#xff1a;(尽量在ubuntu下使用, 本次代码均在该环境下实现) sudo apt-get install sox # 安装语音播放软件 pip …

人工智能的基础-深度学习

什么是深度学习? 深度学习是机器学习领域中一个新的研究方向&#xff0c;它被引入机器学习使其更接近于人工智能。 深度学习是机器学习领域中一个新的研究方向&#xff0c;它被引入机器学习使其更接近于最初的目标——人工智能。 深度学习是学习样本数据的内在规律和表示层次&…