【Week-P3】CNN天气识别

文章目录

  • 一、环境配置
  • 二、准备数据
  • 三、搭建网络结构
  • 四、开始训练
  • 五、查看训练结果
  • 六、总结
    • 6.1 不改变学习率的前提下,将训练epoch分别增加到50、60、70、80、90
      • (1)epoch = 50 的训练情况如下:
      • (2)epoch = 60 的训练情况如下:
      • (3)epoch = 70 的训练情况如下:
      • (4)epoch = 80 的训练情况如下:
      • (5)epoch = 90 的训练情况如下:
    • 6.2 在epoch=50、60、70、80、90的基础上修改固定学习率为动态学习率
      • (1)epoch = 50 的训练情况如下:
      • (2)epoch = 60 的训练情况如下:
      • (3)epoch = 70 的训练情况如下:
      • (4)epoch = 80 的训练情况如下:
      • (5)epoch = 90 的训练情况如下:

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

🍺本文基础要求:
(1)本地读取并加载数据。
(2)测试集accuracy到达93%
🍻拔高:
(1)测试集accuracy到达95%
(2)调用模型识别一张本地图片

一、环境配置

# 1. 设置环境
import sys
from datetime import datetimeimport torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlib,randomprint("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("Pytorch version: " + torch.__version__)
print("Python version: " + sys.version)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

在这里插入图片描述

二、准备数据

导入数据分四步:
● 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
● 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
● 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classNames
● 第四步:打印classNames列表,显示每个文件所属的类别名称。

'''
D:\jupyter notebook\DL-100-days\datasets\P3-天气识别\weather_photos\
'''
print("---------------------2.1 导入本地数据------------------")
data_dir = 'D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
classNamesprint("---------------------2.2 数据可视化------------------")
import matplotlib.pyplot as plt
from PIL import Image# 指定图像文件夹路径
image_folder = 'D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/cloudy/'# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):img_path = os.path.join(image_folder, img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')# 显示图像
plt.tight_layout()
plt.show()print("---------------------2.3 定义train_transforms函数,完成图片尺寸归一化------------------")
total_datadir = 'D:\jupyter notebook\DL-100-days\datasets\P3-天气识别\weather_photos'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_dataprint("---------------------2.4 划分数据集------------------")
# 使用torch.utils.data.random_split()方法进行数据集划分。
# 该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_datasetprint("---------------------2.4.1 检查训练集、测试集的size------------------")
# ● train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
# ● test_size表示测试集大小,是总体数据长度减去训练集大小。
train_size,test_sizeprint("---------------------2.4.1 检查训练集、测试集的size------------------")
batch_size = 32
# ⭐torch.utils.data.DataLoader()参数详解
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

在这里插入图片描述

三、搭建网络结构

print("---------------------3. 定义简单CNN网络------------------")
import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))      x = F.relu(self.bn2(self.conv2(x)))     x = self.pool(x)                        x = F.relu(self.bn4(self.conv4(x)))     x = F.relu(self.bn5(self.conv5(x)))  x = self.pool(x)                        x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model

在这里插入图片描述

四、开始训练

print("---------------------4. 训练模型------------------")
print("---------------------4.1 设置超参数------------------")
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)print("---------------------4.2 编写训练函数------------------")
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossprint("---------------------4.3 编写测试函数------------------")
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossprint("---------------------4.4 正式训练------------------")
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里插入图片描述

五、查看训练结果

print("---------------------5. 训练结果可视化------------------")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
测试准确率Test_Accuracy = 89.8%。

六、总结

尝试提高test_accuracy的值。

【提高准确率方法总结】

6.1 不改变学习率的前提下,将训练epoch分别增加到50、60、70、80、90

不同epoch次数得到的test_accuracy的结果如下表:

epochtest_accuracy
epoch = 5092.4%
epoch = 6093.3%
epoch = 7092.4%
epoch = 8094.2%
epoch = 9090.2%

(1)epoch = 50 的训练情况如下:

得到训练情况如下:
在这里插入图片描述
在这里插入图片描述
结论:50个epoch训练完,test_accuracy = 92.4%。在学习率不变的情况下,增加epoch次数是能够增加test_accuracy的值的。

(2)epoch = 60 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(3)epoch = 70 的训练情况如下:

在这里插入图片描述

在这里插入图片描述

(4)epoch = 80 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(5)epoch = 90 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

6.2 在epoch=50、60、70、80、90的基础上修改固定学习率为动态学习率

【参考这里】

使用pytorch提供的学习率,在torch.optim.lr_scheduler内部,基于当前epoch的数值,封装了几种相应的动态学习率调整方法,该部分的官方手册传送门——optim.lr_scheduler官方文档。需要注意的是学习率的调整需要应用在优化器参数更新之后,也就是说:

optimizer = torch.optim.XXXXXXX()#具体optimizer的初始化
scheduler = torch.optim.lr_scheduler.XXXXXXXXXX()#具体学习率变更策略的初始化
for i in range(epoch):for data,label in dataloader:out = net(data)output_loss = loss(out,label)optimizer.zero_grad()loss.backward()optimizer.step()scheduler.step()

在这里插入图片描述
设置动态学习率,不同epoch次数的test_accuracy值如下表所示:

epochtest_accuracy
epoch = 5092.0%
epoch = 6093.3%
epoch = 7092.4%
epoch = 8093.3%
epoch = 9087.6%

(1)epoch = 50 的训练情况如下:

训练情况如下:test_accuracy最高能达到92.9%,然后又降下来,等50个epoch都训练完,最终的test_accuracy = 92.0%。
在这里插入图片描述
在这里插入图片描述

(2)epoch = 60 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(3)epoch = 70 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(4)epoch = 80 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(5)epoch = 90 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/308652.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nodejs微信小程序+python+PHP的艺术展览馆艺术品管理系统-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

自检服务器,无需服务器、不用编程。

自检服务器,无需服务器、不用编程。 大家好,我是JavaPub. 这几年自媒体原来热,很多人都知道了个人 IP 的重要性。连一个搞中医的朋友都要要做一个自己的网站,而且不想学编程、还不想花 RMB 租云服务。 老读者都知道&#xff0c…

main参数传递、反汇编、汇编混合编程

week03 一、main参数传递二、反汇编三、汇编混合编程 一、main参数传递 参考 http://www.cnblogs.com/rocedu/p/6766748.html#SECCLA 在Linux下完成“求命令行传入整数参数的和” 注意C中main: int main(int argc, char *argv[]), 字符串“12” 转为12,可以调用atoi…

直方图与均衡化

直方图 统计图像中相同像素点的数量。 使用cv2.calcHist(images, channels, mask, histSize, ranges)函数 images:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。 channels:同样用中括号括起来&#xff…

准备用vscode代替sourceinsight

vscode版本1.85.1 有的符号,sourceinsight解析不到。 看网上说vscode内置了ripgrep,但ctrlshiftf在文件里查找的时候,速度特别慢,根本不像ripgrep的速度。ripgrep的速度是很快的。 但今天再查询,速度又很快了&#x…

Java内存模型(JMM)详解

1. 介绍 1.1 JMM概述 Java内存模型(Java Memory Model简称JMM)是一种抽象的概念,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段,静态字段和构成数组对象的元素)的…

Vue2+element-ui 实现select选择器结合Tree树形控件实现下拉树效果

效果&#xff1a; DOM部分 &#xff1a; // 设置el-option隐藏的下拉选项&#xff0c;选项显示的是汉字label&#xff0c;值是value // 如果不设置一个下拉选项&#xff0c;下面的树形组件将无法正常使用 <el-form-item label"报警区域" prop"monitorId"…

ACM32F403/F433 12 位多通道国产芯片,支持 MPU 存储保护功能,应用于工业控制,智能家居等产品中

ACM32F403/F433 芯片的内核基于 ARMv8-M 架构&#xff0c;支持 Cortex-M33 和 Cortex-M4F 指令集。芯片内核 支持一整套DSP指令用于数字信号处理&#xff0c;支持单精度FPU处理浮点数据&#xff0c;同时还支持Memory Protection Unit &#xff08;MPU&#xff09;用于提升应用的…

stm32中的i2c协议

stm32中I2C 文章目录 stm32中I2CI2C 协议简介I2C物理层协议层I2C基本读写过程 **通讯的起始和停止信号****数据有效性****地址及数据方向****响应** STM32的I2C特性及架构**STM32** **的** I2C外设简介STM32 的 I 2C 架构剖析通讯引脚 通讯过程主发送器主接收器 I2C初始化结构体…

隧道代理HTTP工作原理:一场奇妙的网络魔法表演

嘿&#xff0c;小伙伴们&#xff01;今天我们要一起探索一个有趣的话题——隧道代理HTTP的工作原理。这不是普通的表演&#xff0c;而是一场奇妙的网络魔法表演&#xff01; 首先&#xff0c;让我们想象一下&#xff0c;网络世界就像一个大舞台&#xff0c;而我们每个人都是这…

mysql日志报错报错:Bad handshake

MySQL版本&#xff1a;5.7.4 mysql日志报错如下 导致数据库报错的原因是客户端那边是java程序启用了ssl连接&#xff0c;java程序日志如下 原因是&#xff1a; MySQL 5.5.45&#xff0c; 5.6.26和5.7.6的要求&#xff0c;如果没有设置显式选项&#xff0c;则必须默认建立SSL…

Linux升级指南:保持系统安全和高效运行

Linux系统的升级是确保系统稳定和安全性的重要步骤。本文将介绍Linux系统升级的基本概念&#xff0c;以及具体的操作步骤和注意事项&#xff0c;以帮助用户顺利升级他们的Linux系统。 Linux操作系统以其稳定性和可定制性而闻名&#xff0c;它经常通过升级来提供新的功能、修复漏…