Activemq存储KahaDb详解

引言

ActiveMQ在不提供持久化的情况下,数据保存在内存中,一旦应用崩溃或者重启之后,数据都将会丢失,这显然在大部分情况下是我们所不希望的。对此ActiveMQ提供了两种持久化方式以供选择。

kahaDB

kahaDB是一个基于文件,支持事务的、可靠,高性能,可扩展的消息存储器,目前是activeMQ默认的持久化方式,配置也十分简单

<persistenceAdapter><kahaDB directory="${activemq.data}/kahadb"/>
</persistenceAdapter>

以上配置是将存储目录设置为${activemq.data}/kahadb

存储目录下文件说明:

  • db.data:索引文件,本质上是BTree的实现,存储到了db-*.log消息文件的索引

  • db.redo:用来进行数据恢复的redo文件

  • db-*.log:存储消息内容的文件,包括消息元数据、订阅关系、事务等数据。
    lock:表示已启动一个实例。

kahaDB配置支持的参数:

参数默认值说明
indexWriteBatchSize1000当缓存中更新的索引到达1000时,将数据同步到磁盘中,数据是批量同步的。
indexCacheSize10000在内存中最多分配多个页面来缓存索引。缓存的索引越多,命中的概率就越大,检索的效率就越高
journalMaxFileLength33554432默认值32MB,配置单个消息文件的大小,超过一定大小以后重新创建一个新的文件进行保存。
enableJournalDiskSyncstrue表示采用同步写磁盘,即消息先存储到磁盘后再向Producer返回ACK
cleanupInterval30000当消息被消息者成功消费之后,Broker就可以将消息删除的时间间隔。
checkpointInterval5000每隔5s将内存中的index缓存更新到磁盘文件中。

底层实现

persist_01 (1)

从上图中可以看出:图中各个部分与KahaDB配置的存储目录下的文件是一 一对应的。

①在内存(cache)中的那部分B-Tree是Metadata Cache

通过将索引缓存到内存中,可以加快查询的速度(quick retrival of message data)。但是需要定时将 Metadata CacheMetadata Store同步。

**这个同步过程就称为:check point。**由checkpointInterval选项 决定每隔多久时间进行一次checkpoint操作。

BTree Indexes则是保存在磁盘上的,称为Metadata Store,它对应于文件db.data,它就是对Data Logs以B树的形式 索引。有了它,Broker(消息服务器)可以快速地重启恢复,因为它是消息的索引,根据它就能恢复出每条消息的location

如果Metadata Store被损坏,则只能扫描整个Data Logs来重建B树了,这个过程是很复杂且缓慢的。

Data Logs则对应于文件 db-*.log,默认是32MB

Data Logs以日志形式存储消息,它是生产者生产的数据的真正载体。

The data logs are used to store data in the form of journals, 
where events of all kinds—messages, acknowledgments, subscriptions, subscription cancellations, transaction boundaries, etc.
---are stored in a rolling log

Redo Log则对应于文件 db.redo

redo log的原理用到了“Double Write”。关于“Double Write”可参考

简要记录下自己的理解:因为磁盘的页大小与操作系统的页大小不一样,磁盘的页大小一般是16KB,而OS的页大小是4KB。而数据写入磁盘是以磁盘页大小为单位进行的,即一次写一个磁盘页大小,这就需要4个OS的页大小(4*4=16)。如果在写入过程中出现故障(突然断电)就会导致只写入了一部分数据(partial page write)

而采用了“Double Write”之后,将数据写入磁盘时,先写到一个Recovery Buffer中,然后再写到真正的目的文件中。在ActiveMQ的源码PageFile.java中有相应的实现。

扩展知识:Linux中的日志文件系统:因为Linux的 ext文件系统采用索引节点来存储文件的元数据,每次数据写入磁盘之后,需要更新索引节点表。而写入磁盘与更新索引节点表并不是“原子操作”,比如,在数据写入磁盘后,系统发生故障,之前写入的数据就再也找不到了。

因此,日志文件系统给Linux系统增加了一层安全性:数据写入存储设备之前,先将数据(或者只将索引节点信息写日志)写入到临时文件中,该临时文件称日志。如果在数据写入时发生故障,还可以通过日志来进行一定的恢复。

附录

参考:

https://www.cnblogs.com/hapjin/p/5674257.html

https://www.iteye.com/blog/netcomm-1455086

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/310039.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

组合总和[中等]

一、题目 给你一个 无重复元素 的整数数组candidates和一个目标整数target&#xff0c;找出candidates中可以使数字和为目标数target的 所有 不同组合 &#xff0c;并以列表形式返回。你可以按 任意顺序 返回这些组合。candidates中的 同一个 数字可以 无限制重复被选取 。如果…

借助 Google Play 游戏电脑版新功能,加速业务增长

作者 / Google Play 游戏总监 Arjun Dayal Google Play 游戏电脑版测试版自去年发布以来&#xff0c;取得了巨大的发展。Google Play 游戏电脑版现在提供 3,000 多种游戏&#xff0c;覆盖 120 多个国家/地区的用户&#xff0c;为玩家提供各种类型的游戏。我们的热门移动游戏目录…

Grafana监控数据可视化

Grafana 是一个可视化面板&#xff0c;有着非常漂亮的图表和布局展示&#xff0c;功能齐全的度量仪表盘和图形编辑器&#xff0c;支持 Graphite、zabbix、InfluxDB、Prometheus、OpenTSDB、Elasticsearch 等作为数据源&#xff0c;比 Prometheus 自带的图表展示功能强大太多&am…

Jupyter Notebook又一地理数据可视化扩展!

本次分享一个Jupyter Notebook地理数据可视化扩展&#xff1a;pyl7vp pyl7vpPythonl7vp&#xff0c;如其名&#xff0c;是l7vp在Python3方向的封装&#xff0c;l7vp是蚂蚁集团AntV数据可视化团队开发的地理空间智能应用研发开源平台。 通过pyl7vp可在Jupyter Notebook中轻松完…

SVN下载安装(服务器与客户端)

1.下载 服务器下载&#xff1a;Download | VisualSVN Server 客户端下载&#xff1a;自行查找 2. 服务器安装 双击执行 运行 下一步 同意下一步 下一步 选中安装目录 3. 客户端安装 双击执行 下一步 4. 服务器创建仓库 5. 服务器创建用户 6. 客户端获取资源 文件夹右键

【vim 学习系列文章 3.1 -- vim 删除 ^M】

请阅读【嵌入式开发学习必备专栏 之 VIM 专栏】 文章目录 ^M 来源^M 删除 ^M 来源 在 Vim 中打开文件时&#xff0c;您可能会遇到行尾的 ^M 字符&#xff0c;这通常是因为文件使用了 Windows 风格的回车换行符&#xff08;CRLF&#xff09;&#xff0c;而不是 Unix/Linux 风格…

数据结构与算法 - 查找

文章目录 第1关&#xff1a;实现折半查找第2关&#xff1a;实现散列查找 第1关&#xff1a;实现折半查找 代码如下&#xff1a; /*************************************************************date: April 2009copyright: Zhu EnDO NOT distribute this code. ***********…

python+django超市进销存仓库管理系统s5264

本次设计任务是要设计一个超市进销存系统&#xff0c;通过这个系统能够满足超市进销存系统的管理及员工的超市进销存管理功能。系统的主要功能包括&#xff1a;首页、个人中心、员工管理、客户管理、供应商管理、承运商管理、仓库信息管理、商品类别管理、由管理员和员工&#…

【MATLAB】BiGRU神经网络时序预测算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 BiGRU神经网络时序预测算法是一种基于双向门控循环单元&#xff08;GRU&#xff09;的多变量时间序列预测方法。该方法结合了双向模型和门控机制&#xff0c;旨在有效地捕捉时间序列数据中…

基于FPGA的数字电路(PWM脉宽调制)

一.PWM的制作原理 假如我们有一个锯齿波&#xff0c;然后在锯齿波上设置一个阈值&#xff08;黑色水平虚线&#xff09;&#xff0c;凡是大于该阈值时输出均为高电平&#xff0c;反之则为低电平&#xff0c;这样我们是不是就得到一个PWM信号呢&#xff1f;如果我们想调整它的占…

【PyQt】(自定义类)QIcon派生,更易用的纯色Icon

嫌Qt自带的icon太丑&#xff0c;自己写了一个&#xff0c;主要用于纯色图标的自由改色。 当然&#xff0c;图标素材得网上找。 Qt原生图标与现代图标对比&#xff1a; 没有对比就没有伤害 Qt图标 网络素材图标 自定义类XJQ_Icon&#xff1a; from PyQt5.QtGui import QIc…

宝塔部署flask添加ssl即https

在宝塔部署flask的步骤我已经写了一篇博客:宝塔部署flask项目-CSDN博客 之前说如果出现找不到application错误: spawned uWSGI http 1 (pid: 3116) --- no python application found, check your startup logs for errors --- [pid: 3114|app: -1|req: -1/1] 127.0.0.1 () {6…