二叉树详解(深度优先遍历、前序,中序,后序、广度优先遍历、二叉树所有节点的个数、叶节点的个数)

目录

一、树概念及结构(了解) 

1.1树的概念 

1.2树的表示 

二、二叉树概念及结构 

2.1概念 

2.2现实中的二叉树:

2.3数据结构中的二叉树:

2.4特殊的二叉树: 

2.5 二叉树的存储结构 

2.51 顺序存储: 

2.5.2 链式存储:

三、二叉树性质相关选择题练习 

四、二叉树的实现

4.1头文件:

4.2Test.c

4.3前序,中序,后序(深度优先遍历)

 4.4二叉树所有节点的个数

​编辑

4.5叶节点的个数

4.6层序遍历(广度优先遍历,使用队列)


一、树概念及结构(了解) 

1.1树的概念 

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它
叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,根节点没有前驱结点除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继,因此,树是递归定义的。

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如下图:A的为6

  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

  • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B 的父节点

  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节 点

  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

关于树的高度,还有一种看法,就是把高度从0开始看,此时树的高度为3。

  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

  • 森林:由m(m>0)棵互不相交的多颗树的集合称为森林;(数据结构中的学习并查集本质就是 一个森林)

1.2树的表示 

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,
如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子
兄弟表示法。

typedef int DataType;
struct Node
{
    struct Node* _firstChild1;    // 第一个孩子结点
    struct Node* _pNextBrother;   // 指向其下一个兄弟结点
    DataType _data;               // 结点中的数据域
};

另一种方式:顺序表存孩子的指针(不推荐使用)

struct TreeNode

{

        int data;

        vector<struct TreeNode*> childs;

}

还有一种表示方式,双亲表示法:

双亲表示法采用顺序表(数组)存储普通树,其实现的核心思想是:顺序存储各个节点的同时,给各节点附加一个记录其父节点位置的变量

#define MAX_SIZE 100  // 宏定义树中结点的最大数量
 
typedef struct Snode{
    char data;
    int parent;
} PTNode;
 
typedef struct{
    PTNode tnode[MAX_SIZE];  // 存放树中所有结点
    int n;  // 结点数
} PTree;

1.3树在实际中的运用(表示文件系统的目录树结构) 

二、二叉树概念及结构 

2.1概念 

一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子
树和右子树的二叉树组成。

二叉树的特点:
1. 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
2. 二叉树的子树有左右之分,其子树的次序不能颠倒。

2.2现实中的二叉树:

2.3数据结构中的二叉树:

2.4特殊的二叉树: 

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉
树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对
于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号
从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉
树。

2.5 二叉树的存储结构 

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
二叉树的性质 
1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2
+1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=logN + 1

2.51 顺序存储: 

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树
会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲
解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2.5.2 链式存储:

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的
方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩
子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都
是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

三、二叉树性质相关选择题练习 

1.某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为( 

A ABDHECFG
B ABCDEFGH
C HDBEAFCG
D HDEBFGCA
2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为
()
A E
B F
C G
D H
3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为____。
A adbce
B decab
C debac
D abcde

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
 

四、二叉树的实现

4.1头文件:

#pragma once
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>
#include <stdlib.h>typedef int BTDataType;typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;struct BinaryTreeNode* right;BTDataType data;
}BTNode;

4.2Test.c

int main()
{BTNode* A = (BTNode*)malloc(sizeof(BTNode));A->data = 'A';A->left = NULL;A->right = NULL;BTNode* B = (BTNode*)malloc(sizeof(BTNode));B->data = 'B';B->left = NULL;B->right = NULL;BTNode* C = (BTNode*)malloc(sizeof(BTNode));C->data = 'C';C->left = NULL;C->right = NULL;BTNode* D = (BTNode*)malloc(sizeof(BTNode));D->data = 'D';D->left = NULL;D->right = NULL;BTNode* E = (BTNode*)malloc(sizeof(BTNode));E->data = 'E';E->left = NULL;E->right = NULL;A->left = B;A->right = C;B->left = D;B->right = E;return 0;
}

4.3前序,中序,后序(深度优先遍历)

void PrevOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%c ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);
}void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);}

 4.4二叉树所有节点的个数

 

//方法一:定义全局变量(不推荐)
int size = 0;
void TreeSize(BTNode* root)
{if (root == NULL){return;}else {++size;}TreeSize(root->left);TreeSize(root->right);return size;
}

方法二:传址调用

int TreeSize(BTNode* root,int* psize)
{if (root == NULL){return;}else {++(*psize);}TreeSize(root->left, psize);TreeSize(root->right, psize);return psize;
}

方法三:递归、分治思想:
否则,返回左子树节点数 + 右子树节点数 + 1(当前节点)

int TreeSize(BTNode* root)
{// 如果树为空(即根节点为NULL),则返回0  // 否则,返回左子树节点数 + 右子树节点数 + 1(当前节点)return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

4.5叶节点的个数

int LeafSize(BTNode* root)
{if (root == NULL)return 0;if (root->left == NULL && root->right == NULL)return 1;return TreeSize(root->left) + TreeSize(root->right);}

4.6层序遍历(广度优先遍历,使用队列)

void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%c ", front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}QueueDestory(&q);
}

新年第一篇!!!

祝大家新年快乐

看到这里了还不给博主扣个:
⛳️ 点赞☀️收藏 ⭐️ 关注!

你们的点赞就是博主更新最大的动力!
有问题可以评论或者私信呢秒回哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/312602.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第十四章 Sentinel实现熔断与限流

Sentinel实现熔断与限流 gitee&#xff1a;springcloud_study: springcloud&#xff1a;服务集群、注册中心、配置中心&#xff08;热更新&#xff09;、服务网关&#xff08;校验、路由、负载均衡&#xff09;、分布式缓存、分布式搜索、消息队列&#xff08;异步通信&#x…

【小沐学NLP】Python实现K-Means聚类算法(nltk、sklearn)

文章目录 1、简介1.1 机器学习1.2 K 均值聚类1.2.1 聚类定义1.2.2 K-Means定义1.2.3 K-Means优缺点1.2.4 K-Means算法步骤 2、测试2.1 K-Means&#xff08;Python&#xff09;2.2 K-Means&#xff08;Sklearn&#xff09;2.2.1 例子1&#xff1a;数组分类2.2.2 例子2&#xff1…

图片预览 element-plus 带页码

vue3、element-plus项目中&#xff0c;点击预览图片&#xff0c;并显示页码效果如图 安装 | Element Plus <div class"image__preview"><el-imagestyle"width: 100px; height: 100px":src"imgListArr[0]":zoom-rate"1.2":max…

HTML+CSS+JS制作三款雪花酷炫特效

🎀效果展示 🎀代码展示 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html

2021-06-25 51蛋骗鸡按键切合LED

缘由ISIS 7 Professional_有问必答-CSDN问答 #include "REG52.h" sbit K1 P3^0; sbit K2 P3^1; sbit K3 P3^2; sbit K4 P3^3; void main() {unsigned char Xd0,xz0,cs0;unsigned int wei0;P1255;while(1){if(K10&&Xd0){P10;while(K10);}if(K20&&…

windows进行udp端口转发,解决项目中服务器收不到组播数据的问题

说明 windows7的netsh interface portproxy命令只支持tcp端口转发 如果要进行udp端口转发可以使用sokit 运行sokit 端口转发&#xff08;以为tcp作为讲解&#xff0c;udp类似&#xff09; 选择转发器 输入监听地址&#xff08;SRC地址&#xff09;和端口 输入转发地址&am…

有道翻译web端 爬虫, js

以下内容写于2023-12-28, 原链接为:https://fanyi.youdao.com/index.html#/ 1 在输入框内输入hello world进行翻译,通过检查发出的网络请求可以看到翻译文字的http接口应该是: 2 复制下链接最后的路径,去js文件中搜索下: 可以看到这里是定义了一个函数B来做文字的翻译接口函数…

Linux系统---进程程序替换

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、进程程序替换 一、替换原理 用fork 创建子进程后执行的是和父进程相同的程序 ( 但有可能执行不同的代码分支 ), 子进程往往要…

2024任务驱动Java程序设计讲课提纲

文章目录 为何采用任务驱动&#xff1f;任务驱动Java程序设计课程概述项目一&#xff1a;踏上Java开发之旅任务1&#xff1a;安装配置JDK并开发第一个Java程序1、安装JDK2、配置JDK环境变量3、开发第一个Java程序 任务2&#xff1a;搭建Java集成开发环境IntelliJ IDEA1、安装In…

数据结构与算法教程,数据结构C语言版教程!(第二部分、线性表详解:数据结构线性表10分钟入门)三

第二部分、线性表详解&#xff1a;数据结构线性表10分钟入门 线性表&#xff0c;数据结构中最简单的一种存储结构&#xff0c;专门用于存储逻辑关系为"一对一"的数据。 线性表&#xff0c;基于数据在实际物理空间中的存储状态&#xff0c;又可细分为顺序表&#xff…

ES6之Proxy详解

✨ 专栏介绍 在现代Web开发中&#xff0c;JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性&#xff0c;还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言&#xff0c;JavaScript具有广泛的应用场景&#x…

Octave处理高斯光束

文章目录 读取图像截取感兴趣区域强度图拟合 Octave是一种开源的数值计算软件&#xff0c;主要用于科学计算、数据分析和数值模拟等领域。既提供了一个用户友好的命令行界面&#xff0c;使用户能够通过输入简单的命令来进行各种数学运算和数据操作。也提供了功能完备的GUI窗口&…