DrGraph原理示教 - OpenCV 4 功能 - 阈值

普通阈值

OpenCV中的阈值用于相对于提供的阈值分配像素值。在阈值处理中,将每个像素值与阈值进行比较,如果像素值小于阈值则设置为0,否则设置为最大值(一般为255)。
在OpenCV中,有多种阈值类型可供选择,以下是一些常见的阈值类型:
二进制阈值化:选择一个特定的阈值量,大于该阈值的像素点的灰度值设定为最大值(如8位灰度值最大为255),小于该阈值的像素点的灰度值设定为0。
反二进制阈值化:与二进制阈值化相似,只是最后的设定值相反。在8位灰度图中,例如大于阈值的设定为0,而小于该阈值的设定为255。
截断阈值化:同样需要选择一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。
阈值化为0:选择一个阈值,然后对图像做如下处理:1. 像素点的灰度值大于该阈值的不进行任何改变;2. 像素点的灰度值小于该阈值的,其灰度值全部变为0。
反阈值化为0:与阈值化为0类似,只是像素点的灰度值大于该阈值的不进行任何改变,而小于该阈值的,其灰度值全部变为0。
其实就是调用threshold()函数进行阈值处理,它有4个参数:
参数1:需要处理的原图,一般是灰度图。
参数2:设定的阈值。
参数3:最大阈值,一般为255。
参数4:阈值的方式,主要有5种,分别为cv.THRESH_BINARY、cv.THRESH_BINARY_INV、cv.THRESH_TRUNC、cv.THRESH_TOZERO、cv.THRESH_TOZERO_INV。

/** @brief Applies a fixed-level threshold to each array element.The function applies fixed-level thresholding to a multiple-channel array. The function is typically
used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
values. There are several types of thresholding supported by the function. They are determined by
type parameter.Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
above values. In these cases, the function determines the optimal threshold value using the Otsu's
or Triangle algorithm and uses it instead of the specified thresh.@note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.@param src input array (multiple-channel, 8-bit or 32-bit floating point).
@param dst output array of the same size  and type and the same number of channels as src.
@param thresh threshold value.
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
types.
@param type thresholding type (see #ThresholdTypes).
@return the computed threshold value if Otsu's or Triangle methods used.@sa  adaptiveThreshold, findContours, compare, min, max*/
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,double thresh, double maxval, int type );

5种阈值方式cv.THRESH_BINARY、cv.THRESH_BINARY_INV、cv.THRESH_TRUNC、cv.THRESH_TOZERO、cv.THRESH_TOZERO_INV的效果分别为
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从别的地方看,threshold是处理灰度图,不过从实际运行情况【OpenCV 4.6】来看,彩色图也支持threshold,目测是针对各通道进行threshold后再合成结果图像。有时间看下源码就可以不用猜测了。
从头文件注释中可以看到

Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
above values. In these cases, the function determines the optimal threshold value using the Otsu's
or Triangle algorithm and uses it instead of the specified thresh.
@note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.

即THRESH_OTSU与THRESH_TRIANGLE可组合。这个的结果是8位单通道图,应该是在处理前就将其余类型图像转化为灰度图了
在这里插入图片描述
在这里插入图片描述

智能阈值

运行发现,THRESH_OTSU与THRESH_TRIANGLE的运算结果与阈值大小无关。
这有点象智能阈值,即阈值是智能或自动确定的。
而真正的智能阈值,也叫自适应阈值,是由adaptiveThreshold函数负责处理

/** @brief Applies an adaptive threshold to an array.The function transforms a grayscale image to a binary image according to the formulae:
-   **THRESH_BINARY**\f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
-   **THRESH_BINARY_INV**\f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).The function can process the image in-place.@param src Source 8-bit single-channel image.
@param dst Destination image of the same size and the same type as src.
@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
@param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
@param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
see #ThresholdTypes.
@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
pixel: 3, 5, 7, and so on.
@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
is positive but may be zero or negative as well.@sa  threshold, blur, GaussianBlur*/
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,double maxValue, int adaptiveMethod,int thresholdType, int blockSize, double C );

参数说明如下:
src:输入图像。
dst:输出图像。
maxValue:使用CV_THRESH_BINARY和CV_THRESH_BINARY_INV的最大值。
adaptive_method:自适应阈值算法使用,可以选择CV_ADAPTIVE_THRESH_MEAN_C或CV_ADAPTIVE_THRESH_GAUSSIAN_C。
thresholdType:阈值类型,可以选择CV_THRESH_BINARY或CV_THRESH_BINARY_INV。
blockSize:邻域大小,默认值为3。
自适应阈值方法的思想是根据图像不同区域的亮度分布,计算其局部阈值,从而能够自适应地处理图像的不同区域。这种方法可以更好地处理明暗差异较大的图像,并且可以在一定程度上减轻光照不均对图像分割的影响。
通过调参方式查看的代码:

// [基本 - 智能阈值」类 - 滤镜处理dstMat = CvHelper::ChangeMatDim(dstMat, 1);int paramIndex = 0;int adaptiveMethod = GetParamValue_Int(paramIndex++); // 0 - 算法int thresholdType = GetParamValue_Int(paramIndex++);   // 1 - 类型int maxValue = GetParamValue_Int(paramIndex++);   // 2 - 最大值int blockSize = GetParamValue_Int(paramIndex++);       // 3 - 块大小if(blockSize % 2 == 0)blockSize++;int C = GetParamValue_Int(paramIndex++);     // 4 - 常数adaptiveThreshold(dstMat, dstMat, maxValue, adaptiveMethod, thresholdType, blockSize, C);

在这里插入图片描述
其实,阈值的原理不多,有个直观的感受即可。
运行效果:

OpenCV 4 功能 - 阈值

CSDN的视频上传后,模糊了不少,可能是免费的缘故吧,那就凑合用凑合看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/313039.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DevOps系列之 JNI实现Java调用C的实现案例

JNI(Java Native Interface)允许Java代码与其他语言编写的代码进行交互。以下是一个简单的JNI示例,演示如何使用JNI在Java中调用C/C函数。 最终的目录结构如下: JNI(Java Native Interface)允许Java代码与其…

docker应用部署(部署MySql,部署Tomcat,部署Nginx,部署Redis)

Docker 应用部署 一、部署MySQL 搜索mysql镜像 docker search mysql拉取mysql镜像 docker pull mysql:5.6创建容器,设置端口映射、目录映射 # 在/root目录下创建mysql目录用于存储mysql数据信息 mkdir ~/mysql cd ~/mysqldocker run -id \ -p 3307:3306 \ --na…

cocos creator + vscode debug

安装插件 安装插件:JavaScript Debugger 配置 7456 为本地cocos creator的启动端口 启动debug调试 选择对应的启动方式

【LLM】人工智能应用构建的十大预训练NLP语言模型

在人工智能领域,自然语言处理(NLP)被广泛认为是阅读、破译、理解和理解人类语言的最重要工具。有了NLP,机器可以令人印象深刻地模仿人类的智力和能力,从文本预测到情感分析再到语音识别。 什么是自然语言处理&#xf…

【华为机试】2023年真题B卷(python)-滑动窗口最大值

一、题目 题目描述: 有一个N个整数的数组,和一个长度为M的窗口,窗口从数组内的第一个数开始滑动直到窗口不能滑动为止, 每次窗口滑动产生一个窗口和(窗口内所有数的和),求窗口滑动产生的所有窗口…

《深入理解C++11:C++11新特性解析与应用》笔记七

第七章 为改变思考方式而改变 7.1 指针空值--nullptr 7.1.1 指针空值:从0到NULL,再到nullptr 传统C头文件里NULL是一个宏定义: 在函数重载同时出现int和char *参数版本的函数时,使用NULL作为参数调用函数会调用int参数版本&…

PiflowX组件-WriteToUpsertKafka

WriteToUpsertKafka组件 组件说明 以upsert方式往Kafka topic中写数据。 计算引擎 flink 有界性 Streaming Upsert Mode 组件分组 kafka 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_h…

Java集合/泛型篇----第六篇

系列文章目录 文章目录 系列文章目录前言一、HashTable(线程安全)二、TreeMap(可排序)三、LinkHashMap(记录插入顺序)四、泛型类前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去…

chrome浏览器记录不住网站登录状态,退出后再打开就需要重新登陆的解决办法

chrome浏览器记录不住网站登录状态,退出后再打开就需要重新登陆,比较繁琐。 解决办法: 1、chrome浏览器右上角三个竖的点,然后进入“设置”(Settings),选择“隐私与安全”(Privacy…

I.MX8QM flexcan移植

Android SDK:imx8_13.0.0_1.2.0(android 13 u-boot 2022.04 kernel 5.15.74) 一、kernel 内核配置: # 相应的defconfig中添加使能下面两个宏。 # 官方默认的配置可能是以模块的方式编译,这里直接将can驱动编译到内核中 CONFIG_CANy CONFIG…

FingerprintService启动-Android13

FingerprintService启动-Android13 1、指纹服务启动1.1 rc启动Binder对接指纹厂商TA库1.2 FingerprintService启动1.2.1 SystemServer启动FingerprintService1.2.2 注册Binder服务fingerprint 2、获取底层信息2.1 AIDL 对接TA中获取2.2 指纹类型判断 android13-release 1、指纹…

SpringBoot2.7.12整合Knife4j

SpringBoot2.7.12整合Knife4j 是什么 Knife4j是一个集Swagger2 和 OpenAPI3为一体的增强解决方案 添加依赖 <!--引入Knife4j的官方start包,该指南选择Spring Boot版本<3.0,开发者需要注意--> <dependency><groupId>com.github.xiaoymin</groupId>&l…