基于入侵杂草算法优化的Elman神经网络数据预测 - 附代码

基于入侵杂草算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于入侵杂草算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于入侵杂草优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用入侵杂草算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于入侵杂草优化的Elman网络

入侵杂草算法原理请参考:https://blog.csdn.net/u011835903/article/details/108491479

利用入侵杂草算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

入侵杂草参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 入侵杂草相关参数设定
%% 定义入侵杂草优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,入侵杂草-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/324370.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蟹目标检测数据集VOC格式400张

蟹,一种独特的海洋生物,以其强壮的身体和独特的生活习性而闻名。 蟹的身体宽厚,有一对锐利的大钳子,这使得它们在寻找食物和保护自己时非常有力。蟹的外观颜色多样,有绿色、蓝色、棕色和红色等,这使得它们在…

Go语言中的HTTP路由处理

在Web开发中,路由处理是至关重要的部分。它决定了当用户访问某个URL时,服务器应该如何响应。Go语言提供了多种库和工具来处理HTTP路由。下面,我们将深入了解如何在Go语言中处理HTTP路由。 Go语言的net/http包本身提供了基本的功能来处理路由…

【生成人工智能】Ray如何解决生成人工智能基础设施的常见生产挑战

这是我们生成人工智能博客系列的第一部分。在这篇文章中,我们讨论了如何使用Ray来生产常见的生成模型工作负载。即将发布的一篇博客将深入探讨Alpa等项目为什么要使用Ray来扩展大型模型。 生成的图像和语言模型有望改变企业的设计、支持、开发等方式。本博客重点关…

即时设计:轻松实现设计稿动画,打造独具魅力的GIF作品

制作动画 随着动画设计越来越受欢迎,设计师们需要一款强大的工具,以便轻松控制设计稿元素的属性,实现动画效果。今天,我们向您推荐一款具备帧动画功能的设计工具,它可以让您轻松调整元素的宽高、相对位置等属性&#x…

Visual studio 2010的安装与使用

一、下载及安装 1、下载软件。 百度网盘: 链接:https://pan.baidu.com/s/115RibV7dOI_y8LUGW-94cA?pwd4hrs 提取码:4hrs 2、右键解压下载好的文件。 3、找到cn_visual_2010_……/Setup.hta,双击运行。 4、选择第三个“ Visual…

《Python自动化测试九章经》

Python是当前非常流行的一门编程语言,它除了在人工智能、数据处理、Web开发、网络爬虫等领域得到广泛使用之外,他也非常适合软件测试人员使用,但是,对于刚入行的测试小白来说,并不知道学习Python语言可以用来完成哪些测…

Linux的ping命令、wget命令、curl命令

一、ping命令 通过ping命令,可以检查指定的网络服务器是否是可联通状态 形式:ping [-c num] ip或主机名 -c:检查的次数,不使用-c,将无限次数持续检查 ip或主机名:被检查的服务器的ip地址或主机名地址 …

在mybatis中编写SQL时,提示表名和字段名的设置方法

一、在设置中搜索SQL Dialects 二、将Global SQL Dialect和Project SQL Dialect设置为MySQL 三、添加Path,选择当前项目,完成后应用 四、连接要使用的数据库,连接到具体要使用的数据库 五、连接完成后,在xml中编写sql语句就会有…

Linux第20步_在虚拟机上安装“Visual Studio Code”

1、双击windows系统桌面上的“FileZilla Client.exe”,打开FTP客户端,点击03软件下的Visual Studio Code,发现code_1.50.1-1602600906_amd64。 2、点击“文件”,然后点击“站点管理器”,见下图操作: 3、点…

基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码

基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于群居蜘蛛算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于群居蜘蛛优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&…

手写一个加盐加密算法(java实现)

目录 前言 什么是MD5?? 加盐算法 那别的人会不会跟你得到相同的UUID? 如何使用盐加密? 代码实现 前言 对于我们常见的登录的时候需要用到的组件,加密是一个必不可少的东西,如果我们往数据库存放用户…

网工内推 | 保险业网工,有绩效奖金,CISP认证优先,最高16K

01 华贵人寿保险股份有限公司 招聘岗位:系统管理岗(主机管理方向) 职责描述: 1.负责数据中心私有云平台的规划建设以及后期的运行维护; 2.负责公司操作系统的规划、部署与日常维护; 3.负责操作系统运维相关…