Elasticsearch 8.X进阶搜索之“图搜图”实战

Elasticsearch 8.X “图搜图”实战

1、什么是图搜图?

"图搜图"指的是通过图像搜索的一种方法,用户可以通过上传一张图片,搜索引擎会返回类似或者相关的图片结果。这种搜索方式不需要用户输入文字,而是通过比较图片的视觉信息来找到相似或相关的图片。这项技术在许多不同的应用中都很有用,如找到相同或相似的图片,寻找图片的来源,或者识别图片中的物体等等。

图像搜索的技术基础主要包括图像处理和机器学习等方面。通过图像处理,可以提取图像的特征(如颜色、形状、纹理等),然后通过机器学习模型比较这些特征来寻找相似的图片。近年来,深度学习也在图像搜索中发挥了重要作用,使得搜索结果更加精确和高效。

举例:谷歌“按图搜索”、百度识图。

img

img

2、为什么要图搜索?传统搜索不香吗?

图像搜索和传统的文本搜索都有它们各自的优点和适用场合。以下是一些使用图像搜索的原因:

  • 寻找相似的图片

如果你有一张图片,想找到类似的图片,或者找到这张图片的其他版本(如不同的分辨率或是否有水印等),图像搜索是最直接的方法。

  • 找到图片的来源

如果你找到一张你喜欢的图片,但不知道它来自哪里,图像搜索可以帮你找到它的原始来源,比如说是来自哪个网站或者是谁拍摄的。

  • 识别图片中的内容

图像搜索也可以帮助你识别图片中的物体或人物。比如说,你有一张含有未知物体的图片,你可以通过图像搜索来识别它是什么。

  • 超越语言和文化障碍

有时候,你可能无法用文字准确描述你要搜索的内容,或者你不知道它的正确名称。在这种情况下,图像搜索可以帮助你找到你需要的信息,不需要考虑语言和文化的差异。

举个例子:小区里带孩子玩,遇到一个虫子,小朋友们都围过去,好奇的小朋友就问到“这个虫子叫什么名字?”家长们也都不知道,有点像小时候见过的豆虫,但又不完全一样,最终借助“百度识图”搞定答案。

总的来说,图像搜索是一个非常有用的工具,能够补充和增强传统的文本搜索。不过,它也并不是万能的,有时候还是需要配合文本搜索一起使用才能得到最好的搜索结果。

3、Elasticsearch 8.X 如何实现图搜图?

从宏观角度,类似把“大象放冰箱”的几个大步骤,Elasticsearch 8.X 要实现图搜图需要两个核心步骤:

步骤1:特征提取

使用图像处理和机器学习的方法(如卷积神经网络)来提取图像的特征。这些特征通常会被编码为一个向量,可以用来衡量图像的相似度。有一些开源的工具库可以用于图像特征提取,部分举例如下:

工具库语言主要特性
OpenCVC++,Python,Java提供多种特征提取算法,如SIFT,SURF,ORB等;同时提供一系列图像处理功能
TensorFlowPython提供预训练的深度神经网络模型,如ResNet,VGG,Inception等,用于提取图像特征
PyTorchPython提供预训练的深度神经网络模型,如ResNet,VGG,Inception等,用于提取图像特征
VLFeatC,MATLAB提供多种特征提取算法,如SIFT,HOG,LBP等

这些库都为图像特征提取提供了大量的工具和函数,可以帮助开发者快速地实现图像特征提取。需要注意的是,不同的特征提取方法可能适用于不同的任务,选择何种方法取决于特定的应用需求。

步骤2:索引和搜索

将提取出来的特征向量存储在Elasticsearch中,然后利用Elasticsearch的搜索能力来找出相似的图像。Elasticsearch的向量数据类型可以用来存储向量,而script_score查询可以用来计算相似度。

4、Elasticsearch 8.X “图搜图”实战

4.1 架构梳理

img

  • 数据层:图片数据分散在互联网上,需要采集实现。
  • 采集层:借助爬虫或者已有工具采集数据,存储到本地即可。
  • 存储层:借助向量转换工具或模型工具,遍历图片为向量存入Elasticsearch。
  • 业务层:实现图片转向量后,借助knn检索实现图搜图。

4.2 clip-ViT-B-32-multilingual-v1工具选择

sentence-transformers/clip-ViT-B-32-multilingual-v1是OpenAI的CLIP-ViT-B32模型的多语言版本。

img

该模型可以将文本(50多种语言)和图像映射到一个公共的密集向量空间中,使得图像和匹配的文本紧密相连。这个模型可以用于图像搜索(用户通过大量的图像进行搜索)和多语言的图像分类(图像标签被定义为文本)。

模型地址:https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1

4.3 生成向量

如下的函数能将已有数据集图片生成向量。

model.encode(image)

生成的向量参考如下:

img

4.4 执行检索

POST my-image-embeddings/_search
{"knn"           : {"field"         : "image_embedding","k"             : 5,"num_candidates": 10,"query_vector"  : [-0.7245588302612305,0.018258392810821533,-0.14531010389328003,-0.08420199155807495,.....省略.......]},"fields": ["image_id","image_name","relative_path"]
}
登录后复制

如上搜索请求使用了Elasticsearch的k-NN (k-最近邻) 插件来查找与query_vector最接近的图像。

具体的参数含义如下:

参数含义
knn表示将使用k-最近邻搜索。
field定义了执行k-NN搜索的字段。在此例中,image_embedding 字段应包含图像的嵌入向量。
num_candidates是一个控制搜索精度和性能权衡的选项。在一个大的索引中,寻找确切的k个最近邻居可能会很慢。因此,k-NN插件首先找到num_candidates个候选,然后在这些候选中找到k个最近邻居。在此例中,num_candidates: 10 ,表示首先找到10个候选,然后在这些候选中找到5个最近邻居。
query_vector要比较的查询向量。k-NN插件会计算这个向量与索引中的每个向量的距离,然后返回距离最近的k个向量。在此例中,query_vector 是一个大的浮点数列表,代表图像的嵌入向量。
fields定义了返回的字段。在此例中,搜索结果将只包含image_id,image_name,和relative_path字段。如果不指定 fields参数,搜索结果将包含所有字段。

4.5 图搜图结果展示

img

img

5、小结

总结一下,图搜图功能的实现重点在于两个关键的组件:Elasticsearch和预训练模型 sentence-transformers/clip-ViT-B-32-multilingual-v1。

Elasticsearch,作为一个基于Lucene的搜索服务器,为分布式多用户全文搜索提供了一个基于RESTful web接口的平台。另一方面,sentence-transformers/clip-ViT-B-32-multilingual-v1,这个预训练模型,基于OpenAI的CLIP模型,可以生成文本和图像的向量表示,这对于比较文本和图像的相似性至关重要。

在具体实现过程中,每个图像的特征都由预训练模型提取,得到的向量可以视作图像的数学表示。这些向量将存储在Elasticsearch中,为图搜图功能提供了一个高效的最近邻搜索机制。当有新的图像上传进行搜索时,同样使用预训练模型提取特征,得到向量,并与Elasticsearch中存储的图像向量进行比较,以找出最相似的图像。

整个过程体现了预训练模型在图像特征提取中的重要作用,以及Elasticsearch在进行高效最近邻搜索中的强大能力。两者的结合为图搜图功能的实现提供了一个可靠的技术支持。

参考

  • 1、https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1
  • 2、https://github.com/rkouye/es-clip-image-search
  • 3、https://github.com/radoondas/flask-elastic-image-search
  • 4、https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html
  • 5、https://unsplash.com/data

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/325197.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

查看进程对应的路径查看端口号对应的进程ubuntu 安装ssh共享WiFi设置MyBatis 使用map类型作为参数,复杂查询(导出数据)

Linux 查询当前进程所在的路径 top 命令查询相应的进程号pid ps -ef |grep 进程名 lsof -I:端口号 netstat -anp|grep 端口号 cd /proc/进程id cwd 进程运行目录 exe 执行程序的绝对路径 cmdline 程序运行时输入的命令行命令 environ 记录了进程运行时的环境变量 fd 目录下是进…

小梅哥Xilinx FPGA学习笔记20——无源蜂鸣器驱动设计与验证(音乐发生器设计)

目录 一:章节导读 二:无源蜂鸣器驱动原理 三:PWM 发生器模块设计 3.1 PWM 发生器模块框图 3.2 PWM 发生器模块接口功能描述 3.3 PWM波生成设计文件代码 3.4 测试仿真文件 3.5 测试仿真结果 3.6 板级调试与验证之顶层文件设计 四&am…

支持 input 函数的在线 python 运行环境 - 基于队列

支持 input 函数的在线 python 运行环境 - 基于队列 思路两次用户输入三次用户输入 实现前端使用 vue element uiWindows 环境的执行器子进程需要执行的代码 代码仓库参考 本文提供了一种方式来实现支持 input 函数,即支持用户输的在线 python 运行环境。效果如下图…

UE5.1_UMG序列帧动画制作

UE5.1_UMG序列帧动画制作 UMG序列帧动画制作相对比较简单,不像视频帧需要创建媒体播放器那么复杂,以下简要说明: 1. 事件函数 2. 准备序列帧装入数组 3. 构造调用事件函数 4. 预览 序列帧UMG0105 5. 完成!按需配置即可。

【Mars3d】new mars3d.layer.GeoJsonLayer({不规则polygon加载label不在正中间的解决方案

问题: 1.new mars3d.layer.GeoJsonLayer({type: "polygon",在styleOptions里配置label的时候,发现这个 不规则polygon加载的时候,会出现label不在中心位置。 graphicLayer new mars3d.layer.GeoJsonLayer({ name: "全国省界…

macosx编译qgroundcontrol源码(Qt6.7)

1.克隆源码: clone --recursive http://github.com/mavlink/qgroundcontrol.git 克隆成功 3.编译 编译环境要求: 编译方法: 使用QtCreator编译 使用命令行编译 打开QGroundControl.pro并编译IOS版本 旧版本使用Qt 5.15.2 run qmake 新版本使用Qt 6.6或者更高 IOS工程输出要…

Oracle数据恢复记录一 表数据的恢复

当我们误删/修改数据之后,要进行数据恢复,需要有数据库管理员权限才能实现,所以奉劝各位修改数据要好好确认,搞出异常来就很麻烦了。下面是一个数据恢复简单的例子: DML Sql 这里展示了修改的sql UPDATE XX_MES_PROC…

使用STM32微控制器驱动LCD1602显示器

驱动LCD1602显示器是嵌入式系统常见的任务之一,而STM32微控制器因其灵活性和丰富的外设而成为了广泛采用的解决方案。在这篇文章中,我们将探讨如何使用STM32微控制器来驱动LCD1602显示器。我们将从STM32的GPIO配置、延时函数以及LCD1602的初始化和写入数…

23111 IO进程线程 day5

1>将互斥机制代码重新实现一遍 #include<myhead.h>char buf[128];//定义互斥锁变量 pthread_mutex_t mutex;//创建分支线程函数 void *task(void *arg) {while(1){//获取锁资源pthread_mutex_lock(&mutex);printf("分支线程中buf%s\n",buf);strcpy(buf…

Redis 教程

Redis 简介 Redis 是完全开源的&#xff0c;遵守 BSD 协议&#xff0c;是一个高性能的 key-value 数据库。 Redis 与其他 key - value 缓存产品有以下三个特点&#xff1a; Redis支持数据的持久化&#xff0c;可以将内存中的数据保存在磁盘中&#xff0c;重启的时候可以再次…

Apache Paimon:Streaming Lakehouse is Coming

摘要&#xff1a;本文整理自阿里云智能开源表存储负责人&#xff0c;Founder of Paimon&#xff0c;Flink PMC 成员李劲松&#xff08;花名&#xff1a;之信&#xff09;、同程旅行大数据专家&#xff0c;Apache Hudi & Paimon Contributor 吴祥平、汽车之家大数据计算平台…

移动神器RAX3000M路由器不刷固件变身家庭云之六(高级应用):设置https

本系列文章&#xff1a; 移动神器RAX3000M路由器变身家庭云之一&#xff1a;开通SSH&#xff0c;安装新软件包 移动神器RAX3000M路由器变身家庭云之二&#xff1a;安装vsftpd 移动神器RAX3000M路由器变身家庭云之三&#xff1a;外网访问家庭云 移动神器RAX3000M路由器变身家庭云…