分布式事务问题

传统的单机事务。在传统数据库事务中,必须要满足四个原则:ACID原则

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务

  • 跨服务的分布式事务

  • 综合情况

在分布式系统下,一个业务跨越多个服务或数据源,每个服务都是一个分支事务,要保证所有分支事务最终状态一致,这样的事务就是分布式事务

CAP定理 

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency(一致性)

  • Availability(可用性)

  • Partition tolerance (分区容错性)

 Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。

比如现在包含两个节点,其中的初始数据是一致的。当我们修改其中一个节点的数据时,两者的数据产生了差异:

要想保住一致性,就必须实现node01 到 node02的数据 同步: 

可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。

如图,有三个节点的集群,访问任何一个都可以及时得到响应:

 

分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。 

Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务

总结

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。

当节点接收到新的数据变更时,就会出现问题了:

如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。

如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。

也就是说,在P一定会出现的情况下,A和C之间只能实现一个。

 BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。

  • Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。

  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。

解决分布式事务的思路

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。

  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC);子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务。 


Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入

  • TCC模式:最终一致的分阶段事务模式,有业务侵入

  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式

  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者。

XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

正常情况:

 异常情况:

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务

  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作

    • 如果一阶段都成功,则通知所有事务参与者,提交事务

    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则。

  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差

  • 依赖关系型数据库实现事务

 实现XA模式

Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:

1、修改application.yml文件(每个参与事务的微服务),开启XA模式:

seata:data-source-proxy-mode: XA

2、给发起全局事务的入口方法添加@GlobalTransactional注解:

3、重启服务并测试

重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。

 AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

Seata的AT模型

阶段一RM的工作:

  • 注册分支事务

  • 记录undo-log(数据快照)

  • 执行业务sql并提交

  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

AT与XA的区别

简述AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。

  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。

  • XA模式强一致;AT模式最终一致

脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:

解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。

优缺点

AT模式的优点:

  • 一阶段完成直接提交事务,释放数据库资源,性能比较好

  • 利用全局锁实现读写隔离

  • 没有代码侵入,框架自动完成回滚和提交

AT模式的缺点:

  • 两阶段之间属于软状态,属于最终一致

  • 框架的快照功能会影响性能,但比XA模式要好很多

实现AT模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。

1、导入数据库表,记录全局锁:

CREATE TABLE `undo_log`  (`branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id',`xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id',`context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization',`rollback_info` longblob NOT NULL COMMENT 'rollback info',`log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status',`log_created` datetime(6) NOT NULL COMMENT 'create datetime',`log_modified` datetime(6) NOT NULL COMMENT 'modify datetime',UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE
)CREATE TABLE `lock_table`  (`row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,`xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`transaction_id` bigint(20) NULL DEFAULT NULL,`branch_id` bigint(20) NOT NULL,`resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`gmt_create` datetime NULL DEFAULT NULL,`gmt_modified` datetime NULL DEFAULT NULL,PRIMARY KEY (`row_key`) USING BTREE,INDEX `idx_branch_id`(`branch_id`) USING BTREE
) 

2、修改application.yml文件,将事务模式修改为AT模式即可:

seata:data-source-proxy-mode: AT # 默认就是AT

3、重启服务并测试

TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;

  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。

  • Cancel:预留资源释放,可以理解为try的反向操作。

Seata的TCC模型

优缺点

TCC模式的每个阶段是做什么的?

  • Try:资源检查和预留

  • Confirm:业务执行和提交

  • Cancel:预留资源的释放

TCC的优点是什么?

  • 一阶段完成直接提交事务,释放数据库资源,性能好

  • 相比AT模型,无需生成快照,无需使用全局锁,性能最强

  • 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

  • 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦

  • 软状态,事务是最终一致

  • 需要考虑Confirm和Cancel的失败情况,做好幂等处理

空回滚 

当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。

业务悬挂

对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂

执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

实现TCC模式

定义一张表:

CREATE TABLE `account_freeze_tbl` (`xid` varchar(128) NOT NULL,`user_id` varchar(255) DEFAULT NULL COMMENT '用户id',`freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',`state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;

其中:

  • xid:是全局事务id

  • freeze_money:用来记录用户冻结金额

  • state:用来记录事务状态

  • Try业务:

    • 记录冻结金额和事务状态到account_freeze表

    • 扣减account表可用金额

  • Confirm业务

    • 根据xid删除account_freeze表的冻结记录

  • Cancel业务

    • 修改account_freeze表,冻结金额为0,state为2

    • 修改account表,恢复可用金额

  • 如何判断是否空回滚?

    • cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚

  • 如何避免业务悬挂?

    • try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务

 声明TCC接口

TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,

我们在account-service项目中的top.zsyp.account.service包中新建一个接口,声明TCC三个接口:

@LocalTCC
public interface AccountTCCService {@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,@BusinessActionContextParameter(paramName = "money")int money);boolean confirm(BusinessActionContext ctx);boolean cancel(BusinessActionContext ctx);
}

编写实现类

Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {@Autowiredprivate AccountMapper accountMapper;@Autowiredprivate AccountFreezeMapper freezeMapper;@Override@Transactionalpublic void deduct(String userId, int money) {// 0.获取事务idString xid = RootContext.getXID();// 1.扣减可用余额accountMapper.deduct(userId, money);// 2.记录冻结金额,事务状态AccountFreeze freeze = new AccountFreeze();freeze.setUserId(userId);freeze.setFreezeMoney(money);freeze.setState(AccountFreeze.State.TRY);freeze.setXid(xid);freezeMapper.insert(freeze);}@Overridepublic boolean confirm(BusinessActionContext ctx) {// 1.获取事务idString xid = ctx.getXid();// 2.根据id删除冻结记录int count = freezeMapper.deleteById(xid);return count == 1;}@Overridepublic boolean cancel(BusinessActionContext ctx) {// 0.查询冻结记录String xid = ctx.getXid();AccountFreeze freeze = freezeMapper.selectById(xid);// 1.恢复可用余额accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());// 2.将冻结金额清零,状态改为CANCELfreeze.setFreezeMoney(0);freeze.setState(AccountFreeze.State.CANCEL);int count = freezeMapper.updateById(freeze);return count == 1;}
}

SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。

其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。

Seata官网对于Saga的指南:Seata Saga 模式

原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。

Saga也分为两个阶段:

  • 一阶段:直接提交本地事务

  • 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚

优缺点

优点:

  • 事务参与者可以基于事件驱动实现异步调用,吞吐高

  • 一阶段直接提交事务,无锁,性能好

  • 不用编写TCC中的三个阶段,实现简单

缺点:

  • 软状态持续时间不确定,时效性差

  • 没有锁,没有事务隔离,会有脏写

四种模式对比 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/325691.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenHarmony之消息机制实现

OpenHarmony之消息机制实现 背景 在之前的介绍(OpenHarmony之HDF驱动框架)中,了解到OpenHarmony的消息机制主要有以下两种: 用户态应用发送消息到驱动。用户态应用接收驱动主动上报事件。 下面我们分别来看看两种机制用户态的…

网络调试 TCP,开发板用静态地址-入门7

用两台电脑(无线网络)做实验 1.1, 在电脑A上设置为Server如下: 选择TCP Server后,直接跳出用本机IP做为“本地主机地址” 1.2在 电脑B上设置为Client, 远程主机地址设置为Server的 IP 1.3, 在A, B两台电脑上能够互相发送数据 用…

西门子PLC联网数据采集:借助HiWoo Box实现高效监控与管理

在工业自动化领域,西门子PLC作为一种广泛应用的控制器,对于工厂的生产线具有至关重要的作用。如何实现西门子PLC的联网数据采集,提高生产效率和管理水平,成为了许多企业的关注焦点。而HiWoo Box作为一款功能强大的工业网关&#x…

跑通大模型领域的 hello world

跑通书生浦语大模型的 3 个趣味 demo(InternLM-Chat-7B 智能对话、Lagent工具调用解简单数学题、浦语灵笔多模态图文创作和理解)视频和文档。 1、两个框架 InternLM 是⼀个开源的轻量级训练框架,旨在⽀持⼤模型训练⽽⽆需⼤量的依赖。 Lage…

一种DevOpts的实现方式:基于gitlab的CICD(一)

写在之前 笔者最近准备开始入坑CNCF毕业的开源项目,看到其中有一组开源项目的分类就是DevOpts。这个领域内比较出名的项目是Argocd,Argo CD 是一个用于 Kubernetes 的持续交付 (Continuous Delivery) 工具,它以声明式的方式实现了应用程序的…

工会排队规则:深度解析

工会排队规则:深度解析在当今的消费市场中,工会排队规则作为一种创新的营销策略,正逐渐受到广大商家和消费者的青睐。这一规则不仅为商家带来了可观的利润,同时也为消费者提供了一种全新的购物体验。本文将对工会排队规则进行深入…

【开源项目】超经典开源项目实景三维数字孪生智慧工厂

数字孪生工厂,以模型驱动的自动化,与数据驱动的人工智能技术紧密融合与协同,实现机器、工件与组件间全面的和点对点的数据通信。飞渡科技基于自研DTS平台,将物联网IOT、人工智能、大数据、云计算等技术应用于工厂,实现…

【Spring实战】23 Spring Actuator 常用的自定义

文章目录 1. 自定义健康指示器2. 自定义端点3. 自定义端点路径4. 自定义 Actuator 端点的访问权限5. 启动服务6. 访问自定义的 custom 端点总结 Spring Actuator 是 Spring 框架的一个模块,为开发人员提供了一套强大的监控和管理功能。上一篇 【Spring实战】22 Spri…

数据库——SQL注入攻击

【实验内容及要求】 一、内容:掌握SQL注入攻击的原理,掌握基本SQL注入攻击的方法,掌握防SQL注入攻击的基本措施。 二、要求: 1. DVWA环境配置 DVWA(Damn Vulnerable Web Application)是一个用来进行安全…

【2023 CSIG垂直领域大模型】大模型时代,如何完成IDP智能文档处理领域的OCR大一统?

目录 一、像素级OCR统一模型:UPOCR1.1、为什么提出UPOCR?1.2、UPOCR是什么?1.2.1、Unified Paradigm 统一范式1.2.2、Unified Architecture统一架构1.2.3、Unified Training Strategy 统一训练策略 1.3、UPOCR效果如何? 二、OCR大一统模型前…

Linux第10步_通过终端挂载和卸载U盘

学习完“通过终端查看U盘文件”后,我们需要接着学习“通过终端挂载和卸载U盘”。主要是挂载U盘,它的用处很大,目的是通过命令来访问U盘。由于U盘的名字有很多种,为了便于访问,我们把将U盘的第一分区挂载到udisk目录下&…

机器学习 - 决策树

场景 之前有说过k近邻算法,k近邻算法是根据寻找最相似特征的邻居来解决分类问题。k近邻算法存在的问题是:不支持自我纠错,无法呈现数据格式,且吃性能。k近邻算法的决策过程并不可视化。对缺失数据的样本处理很不友好,…