LLM Agent之数据分析领域的应用

数据分析:Data-Copilot

  • paper: Data-Copilot: Bridging Billions of Data and Humans with Autonomous Workflow

  • github: https://github.com/zwq2018/Data-Copilot

先介绍下浙大提出的已扩展的数据分析框架,支持多种金融数据类型的查询,数据处理,简单建模,和数据可视化。Data-copilot 以金融领域的数据分析为例,提供了一套可以简单基于已有数据进行扩展生成的数据分析框架。

整个框架分成两个部分,基于大模型的 API 生成基于生成 API 的 llm 任务规划和执行。其实说复杂也不复杂,数据分析任务里面几个核心的要素就是

  • 分析啥:提问的实体,股票?债券?基金经理?

  • 分析哪段时间:数据的覆盖范围,一季度?今年?

  • 用什么指标:股票的收益率?债券利率?基金净值?

  • 如何分析:收益对比?价格涨跌?排名?

  • 如何输出:绘图?表格?文本?

API生成

设计部分其实是使用大模型来构建更符合上下文语义的 API 调用语句,以及 API 的输入输出。这部分代码并未开源......所以我们只依据论文和脑补做简单介绍。主要分成以下四个步骤

1. 生成更多的用户请求

API 的生成需要基于用户会问什么样的问题。而用户的提问又是基于你有什么样的数据。因此这里使用数据描述和人工编写的种子提问作为上文,让 LLM 生成更多的用户提问。

2. 生成 API 调用语句

把以上生成的所有用户提问,一个个输入模型,使用以下 prompt 指令引导 llm 生成完成一个数据分析任务,所需的多个步骤,以及每个步骤对应的API 描述和伪代码"Interface1={Interface Name: %s, Function description:%s, Input and Output:%s}"

img

3. 合并相似的 API 调用

每得到一个新的 API function,都会和已生成的 API function 配对后输入模型,并使用以下指令让大模型判断两个 function 是否功能相似可以合并为一个新的 API。例如把查询 GDP 的 API 和查询 CPI 的 API 合并为查询 GDP_CPI 的 API。不过个人感觉这个方案时间和 token 开销颇大,可能比较适合 online API 的在线构建,在离线构建时先基于 API 的描述进行聚类,然后每个 cluster 进行合并可能更经济实惠?

img

4. 为每个 API 生成对应代码

最后针对合并后的 API,使用大模型进行代码生成。这里使用了 pandas DataFrame 作为数据处理,数据绘图的数据交互格式。这里论文把工具调用分成了 5 个大类:数据获取,数据处理,合并切片,建模和可视化。

img

看完以上整个 API 构建流程,不难发现使用 llm 来自动生成 API 有以下几个好处(不过估计完全自动化难度不小......)

  • 节省人力

  • 和 APE 的思路类似,大模型生成的指令更符合模型生成偏好,API 同理

  • 当前是离线批量生成,如果可以优化为 online 的 API 生成的话,可以使得 API 具有动态可扩展性

API调用

获得 API 之后,就是如何排列组合规划 API 的执行来回答用户的提问/完成用户的任务。这里的任务流同样拆成了多个步骤:

意图识别

第一步是意图识别,这里其实融合了搜索中 query 预处理的几个功能:

  • 意图识别用于缩小问题范围提高后面 API 调用的准确率

  • 时效性模块基于今天的日期和用户提问,生成问题对应的具体时间范围(包括时间范围标准化)

  • 实体模块用于定位问题的核心实体

  • 输出形式的判别是绘图、表格还是文本输出

论文把以上多个模块融合成了基于 few-shot 的大模型改写任务,会把用户的提问改写成一个新的具有明确时间区间,任务类型更加明确的文本,与其说是意图识别,其实更像 query 改写。如下

img

个人感觉意图这里完全可以不基于大模型,或者可以用大模型造样本再蒸馏到小模型上。以及整个意图识别的模块可以拆分成多个独立且粒度更细的模块,在金融领域至少可以拆分成大类资产实体的抽取对齐,针对不同资产类型的不同问题意图的识别,以及独立的时效性生成/判别模块。意图模块直接影响后面的行为规划,需要准确率和执行成功率都足够高。

行为规划

行为规划模块包含两个步骤,第一步是任务拆解,以上改写后的 query 会作为输入,输入任务拆解模块。同样是基于 few-shot 的大模型指令任务,把任务拆分成多个执行步骤,每个步骤包括任务类型。

这里作者定义了 stock_task、fund_task、economic_task, visualization_task、financial_task 这 5 种任务,任务拆解类似 COT 把一个任务拆分成多个执行步骤,但本质上还是为了缩小 API的调用范围。指令如下

img

基于以上任务选择模块每个步骤的任务类型,例如 stock_task,会有不同的 few-shot prompt 来指导模型针对该任务类型,生成多步的 API 调用,包括每一步调用的 API,输入,输出和返回值。行为规划部分通用指令如下

img

行为规划中一个有意思的点,是论文构建的API中包含三种不同的执行方式,串行操作常规单个输入单个输出,并行操作获取一个证券的多个指标数据,以及循环操作,类似 map 对多个输入执行相同的操作。以下是Data-Copilot的Demo

img

数据洞察:InsightPilot

  • paper:Demonstration of InsightPilot: An LLM-EmpoweredAutomated Data Exploration System

  • 相关 paper:QuickInsights: Quick and Automatic Discovery of Insights fromMulti-Dimensional Data

  • 相关 paper:MetaInsight: Automatic Discovery of Structured Knowledge forExploratory Data Analysis

  • 相关 paper:XInsight: eXplainable Data Analysis Through The Lens ofCausality

  • LLM时代,探索式数据分析的升级之路有哪些新助攻?

InsightPilot与其说是一篇 paper,更像是一份微软 BI 的产品白皮书。主打 EDA 数据洞察,和上面的 Data-copilot 拼在一起,也算是把数据分析最基础工作涵盖了。举个数据洞察的栗子,最早在 UG 用户增长部门工作时,每次 APP 活跃用户下降了,数据分析组收到的任务就是赶紧去分析活跃用户数据,看看到底用户为啥流失了,是被竞品抢走了,是最近上了什么新功能用户不喜欢,还是之前活动拉来的用户质量不高留存较少,基于这些数据洞察,好制定下一步挽留流式用户,激活沉默用户的具体方案。

那如何发现数据中的异常点?一个基础的操作就是对数据进行不同维度的拆分对比。例如把活跃用户分成男女,老幼,不同城市,不同机型,渠道来源,不同阅读偏好等等维度,观察不同 subgroup 的用户他们的活跃是否发生下降,下降比例是否相同,是否有某个维度的用户组流失最显著。这个维度拆分可以是平行维度,也可以是下钻维度,对比方式可以是一阶变化趋势对比,也可以是波动率等二阶趋势的对比等等

微软的实现方案其实是使用 LLM 把之前微软已经开发应用到 BI 的三款数据洞察工具进行了组合串联,这三款数据洞察工具分别是 QuickInsight,MetaInsight和XInsight。我们先简单介绍下这三款工具,再看大模型要如何对数据分析工具进行组合串联。

Insights 们

QuickInsight

QuickInisght 是最早也是功能最基础的数据分析工具,它能快速发现多维数据中的 pattern。它的洞察数据单元由三个要素组成subject ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠)数据空间, 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 拆分维度, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)观察指标}, 以下是{Los Angeles,Month,Sales}产生的数据洞察

img

QuickInsight,会先按不同维度,计算不同指标得到多组数据。洞察部分则是预定了 12 种不同的数据分析方式,例如异常值,突变点,趋势,季节性,相关性等等。每种洞察类型会基于显著性和贡献度进行综合打分,排名靠前的应该是单维度数据变化最显著,且对整体影响较大的。

MetaInsight

QuickInsight的洞察主要基于单个洞察数据单元进行,MetaInsight可以聚合关联多个洞察数据单元,产出更复杂,高级的数据洞察。简单来说是在以上三元组数据洞察的基础上,搜索不同的subsapce,以及measure,寻找具有相似数据洞察的三元组,并进行组合分析。继续以上洛杉矶销量数据的洞察,当我们扩展subspace到其他城市的销售数据时,MetaInsight会产出以下关联分析。

img

XInsight

以上QuickInsight和MetaInsight都还停留在相关性数据分析的领域,而XInsight着眼在因果性分析,也算是前两年很火的因果推断方向。也就是我们不仅想知道手机里同时有快手和抖音APP的用户,使用抖音的时间较短,还想知道到底是快手APP抢夺了用户的时间,还是这部分用户群体本身就属于东看看西看看没有固定偏好的群体。但真实世界中很难找到完全符合假设的因果推断,因为哈哈没有平行世界呀,因此只能通过一些控制变量,和数学建模的方案来近似模拟因果场景。感兴趣的同学可以看过来因果推断的春天

以下的案例中,同样是按月份维度进行拆分,航班延误时间作为指标。当在整个数据上进行洞察时会发现5月的延误时间比11月高了很多,但当控制变量当日是否下雨时,会发现在下雨天5月的航班延误时间是要低于11月的,因此5月份更高的降雨率可能可以解释5月更高的航班延误时间。

img

LLM Pipeline

InsightPilot就是基于以上三个数据分析引擎,使用大模型进行串联,来完成用户的数据洞察需求。还是那个观点,LLM+Agent的组合中,真正重要的是Agent,LLM只是负责基于上下文语义来选择最合适的Agent,并基于Agent的返回内容来决定下一步的操作,说白了就是串场子的,当然最后也需要LLM来生成数据分析报告。

img

这里大模型主要负责:初始化->洞察选择->意图选择->洞察选择->意图选择....->报告生成

  1. 初始化任务:会先调用QuickInsight生成数据集的基础洞察,然后使用Prompt,让LLM基于Agent返回的多条数据洞察,用户Query,和数据集的描述(类似DB Schema),来选择一条洞察结果来进一步分析。

  2. 意图选择任务:如何分析以上洞察,这里分了三个意图,分别对应以上的3个Agent,Understand-QuickInsight, Summarize-MetaInsight, Explain-XInsight。大模型会基于用户query,以上选择的洞察内容,来选择一个Agent来继续分析

  3. 洞察选择:基于Agent新产生的多个数据洞察,如果LLM判断无法回答用户问题,则会选择一个洞察继续分析

  4. 报告生成:最后基于TopK数据洞察生成报告来解答用户问题

在最后筛选保留Top-K洞察的部分,论文还加入了Ranking环节,说是排序但看实现上,更像是消重+相似度过滤+打散。

  1. 首先洞察之间两两消重,如果A洞察包含B洞察的内容,则删除B洞察

  2. 其次是相似度过滤,会过滤和用户提问关联较低的洞察。不过这里其实有些存疑,因为洞察存在维度下钻和多维度对比,似乎感觉相似度不太合适作为过滤标准。

  3. 最后是打散策略,是为了降低洞察之间的相似度,提高最终内容的丰富度。这里使用了以下的二阶近似打分的策略如下,其中|I|是每条洞察的有用性打分,交集打分是两条洞察有用性的最小值*洞察重叠度,整体策略是为了提高TopK洞察整体包含的信息量

img

最终是InsightPilot生成的报告效果,以及支持用户对报告内容的每个段落,进行数据验证,当点击第一个段落Inspire Me时会生成对应段落相关的数据图表(右图)。老实说只看这个Demo,效果有些惊艳,不过真正厉害的是上面的三个洞察引擎,LLM只是大自然的搬运工和文案工作者。

img

几个月前我们就聊过RAG的经典方案解密Prompt系列14. LLM Agent之搜索应用设计。前几天刚看完openAI在DevDay闭门会议上介绍的RAG相关的经验,有些新的感悟,借此机会再梳理下RAG相关的优化方案。推荐直接看原视频(外网)A Survey of Techniques for Maximizing LLM Performance

RAG最关键的一环其实不是LLM而是相关内容的召回,作为大模型推理的上文,优秀的内容召回应该满足以下条件:

  • 多样性和召回率:召回的内容要可以回答问题,并且内容丰富度,包括同一问题多个观点,多角度

  • 相关性和准确率:召回内容和问题相关,总不能召回100篇里面只有2篇和问题有关

  • 一致性和低冲突:召回内容间的观点一致性较高

  • 更高要求:高时效性,权威性,观点完整性,内容重复度低

这里不妨借鉴前人经验,参考搜索的主流框架:Query理解和扩展 -> 多路召回 -> 合并排序 -> 重排和打散。过去几个月RAG的论文也像是把传统搜索的方案,使用LLM轮番做了一遍范式更新。本章我们先围绕召回内容的多样性唠上两句。

直接使用用户Query进行向量检索,召回率往往不高,原因有以下几个

  • query较短,本身信息有限

  • 短文本的embedding效果较差

  • query短文本向量和document长文本向量存在空间表征差异

  • 用户对自己想问的内容比较模糊

  • 用户的query提问可能需要多个方向的信息聚合才能回答

以上问题其实覆盖了两个点:Query本身包含信息的多样性,搜索索引的多样性。下面我们结合新老论文,以及langchain新增的一些功能,来分别介绍~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/327577.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HIL(硬件在环)技术汇总梳理

HIL(Hardware-in-the-Loop)测试领域的知名公司有dSPACE、NI、Vector和speedgoat等,以下是针对这几家HIL技术的对比分析: 文章目录 dSPACE NI Vector speedgoat 总结 dSPACE dSPACE成立于1988年,起源自德国的帕德…

使用pagehelper插件进行分页查询

一、导入mybatis和pagehelper坐标 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.2.0</version> </dependency> <dependency><groupId&…

Mysql为什么只能支持2000w左右的数据量?

首先说明一下&#xff1a; MySQL并没有硬性规定只能支持到2000万左右的数据量。 其实&#xff0c;MySQL能够处理的数据量远远超过这个数字。无论是开源社区版还是商业版&#xff0c; MySQL在适当的硬件和配置下&#xff0c;都能够支持非常大的数据集。 通常所说的“MySQL只能…

Archlinux下自启动rclone mount

路径&#xff1a; /etc/systemd/system/rclonemount.service [Unit] Descriptionrclonemount Requiresnetwork-online.target.wants Afteralist.service[Service] Typesimple ExecStartPre/bin/mkdir -p /media ExecStart/usr/bin/rclone mount \aliyun: /media \--config /ro…

解决Canvas画图清晰度问题

最近在开发Web端远程桌面的时候遇到的一个问题&#xff0c;解决记录一下&#xff0c;分享给各位有需要用到的朋友。 先吹下水&#xff1a;远程桌面的连接我们是通过Websocket连接后&#xff0c;后端不断返回远程端的界面二进制数据流&#xff0c;我接收到之后转为图像&#xf…

GLTF编辑器设置3D纺织纹理贴图

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 位移贴图是一种纹理映射技术&#xff0c;通过改变顶点的位置来模拟细…

算法第十二天-矩形区域不超过K的最大数值和

矩形区域不超过K的最大数值和 题目要求 解题思路 来自[宫水三叶] 从题面来看显然是一道[二维前缀和]的题目。本题预处理前缀和的复杂度为O(m* n) 搜索所有子矩阵需要枚举[矩形左上角]和[矩形右下角]&#xff0c;复杂度是 O ( m 2 ∗ n 2 ) O(m^2 * n^2) O(m2∗n2)&#xff0c…

看到这个数据库设计,我终于明白了我和其他软测人的差距

看到这个数据库设计&#xff0c;我终于明白了我和其他软测人的差距&#xff01;&#xff01;&#xff01; 前言 01 测试人员为什么要懂数据库设计&#xff1f; 更精准的掌握业务&#xff0c;针对接口测试、Web 测试&#xff0c;都是依照项目/产品需求进行用例设计&#xff0c;如…

微机原理笔记(4)

一、数据传送指令 1、数据传送指令MOV 语句格式&#xff1a;MOV OPD&#xff0c;OPS功能&#xff1a;将源操作数传入目的地址&#xff0c;源地址内容不变。即&#xff08;OPS&#xff09;-->OPD 注意&#xff1a; MOV指令不改变源操作数内容&#xff0c;不影响标志位。源…

python中的变量

最近学习了一套课程&#xff0c;体系比较完善&#xff0c;写一下读书笔记&#xff0c;方便后续的复习。 课程涉及的面比较广&#xff0c;包括python的基础、后端框架django、flask&#xff1b;前端开发&#xff0c;html、css、JavaScript、vue、reac&#xff1b;数据库&#x…

模板模式实现分布式锁实战

前言 分布式锁相信大家都有用过&#xff0c;常见的分布式锁实现方式例如redis、zookeeper、数据库都可以实现&#xff0c;而我们代码中强引用这些分布式锁的代码&#xff0c;那么当我们以后想替换分布式锁的实现方式时&#xff0c;需要修改代码的成本会很高&#xff0c;于是我…

【Python实战】global关键字的应用和线程并发

【Python实战】global关键字的应用和线程并发 一、前言编译环境 二、gloabl全局变量关键字代码示例 三、程序运行时全局变量的变化代码示例 四、全局变量的线程安全问题五、总结 在很多场景和业务实践中&#xff0c;线程之间的变量共享和保持原子性非常的关键和重要。 这边主要…