DataFrame详解

清洗相关的API

清洗相关的API:

1.去重API: dropDupilcates

2.删除缺失值API: dropna

3.替换缺失值API: fillna

去重API: dropDupilcates

dropDuplicates(subset):删除重复数据

1.用来删除重复数据,如果没有指定参数subset,比对行中所有字段内容,如果全部相同,则认为是重复数据,会被删除

2.如果有指定参数subset,只比对subset中指定的字段范围

删除缺失值API: dropna

dropna(thresh,subset):删除缺失值数据.

1.如果不传递参数,只要任意一个字段值为null,就会删除整行数据

2.如果只指定了subset,那么空值的检查,就只会限定在subset指定范围内

3.如果只指定了thresh,那么空值检查的这些字段中,至少需要有thresh(>=thresh)个字段的值不为空,才不会被删除

 替换缺失值API: fillna

fillna(value,subset):替换缺失值数据

1.value:必须要传递参数,指定填充缺失值的数据

2.subset:限定缺失值的替换范围

注意:

        value如果不是字典,那么就只会替换字段类型匹配的空值

        最常用的是value传递字典形式

# 直接基于DataFrame来处理
# 导包
import os
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, IntegerType, StringType, StructField
import pyspark.sql.functions as F# 绑定指定的python解释器
"""
基于RDD转换DataFrame的方式需求分析:1- 将每行内容切分得到单个的单词2- 组织DataFrame的数据结构2.1- 有两列。一列是单词,一列是次数
"""os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
# 创建main函数
if __name__ == '__main__':print('API的清洗')# 创建Sparksession对象spark = SparkSession \.builder \.appName('api_etl_demo') \.master('local[*]') \.getOrCreate()# 数据输入init_df = spark.read.csv(path='file:///export/data/pyspark_projects/02_spark_sql/data/clear_data.csv',sep=',',header=True,inferSchema=True,encoding='utf8')# 查看数据init_df.show()init_df.printSchema()# 数据处理print('=' * 50)# 去重API:  dropDuplicatesinit_df.dropDuplicates().show()# 指定字段去重init_df.dropDuplicates(subset=['id', 'name']).show()print('=' * 50)# 删除缺失值的API:  dropnainit_df.dropna().show()# 指定字段删除init_df.dropna(subset='name').show()init_df.dropna(subset=['name', 'age', 'address']).show()init_df.dropna(thresh=1, subset=['name', 'age', 'address']).show()init_df.dropna(thresh=2, subset=['name', 'age', 'address']).show()print('=' * 50)# 替换缺失值APIinit_df.fillna(9999).show()# value传递字典形式init_df.fillna(value={'id': 9999, 'name': '刘亦菲', 'address': '北京'}).show()# 释放资源spark.stop()

Spark SQL的Shuffle分区设置

Spark SQL底层本质上还是Spark的RDD程序,认为 Spark SQL组件就是一款翻译软件,用于将SQL/DSL翻译为Spark RDD程序, 执行运行

Spark SQL中同样也是存在shuffle的分区的,在执行shuffle分区后, shuffle分区数量默认为 200个,但是实际中, 一般都是需要调整这个分区的, 因为当数据量比较少的数据, 200个分区相对来说比较大一些, 但是当数据量比较大的时候, 200个分区显得比较小

调整shuffle分区的数量:

方案一(不推荐):直接修改spark的配置文件spark-defaults.conf,全局设置,默认值为200

修改设置 spark.sql.shuffle.partitions 20

方案二(常用,推荐使用):在客户端通过指令submit命令提交的时候动态设置shuffle的分区数量,部署上线的时候,基于spark-submit提交运行的时候

        "./spark-submit --conf "spark.sql.shuffle.partitions=20"

方案三(比较常用):在代码中设置,主要在测试环境中使用,一般部署上线的时候,会删除,优先级也是最高的,一般的使用场景是数据量未来不会发生太大的波动

sparksession.conf.set("spark.sql.shuffle.partitions",20)

# 直接基于DataFrame来处理
# 导包
import os
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, IntegerType, StringType, StructField
import pyspark.sql.functions as F# 绑定指定的python解释器
"""
1.2 直接基于DataFrame来处理需求分析:1- 将每行内容切分得到单个的单词2- 组织DataFrame的数据结构2.1- 有两列。一列是单词,一列是次数
"""os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
# 创建main函数
if __name__ == '__main__':print('直接基于DataFrame来处理')spark = SparkSession \.builder \.config("spark.sql.shuffle.partitions", 1) \.appName('dataFrame_world_count_demo') \.master('local[*]') \.getOrCreate()# 数据输入# text方式读取hdfs上的文件init_df = spark.read.text(paths='hdfs://node1:8020/source/word.txt')# # 查看数据# init_df.show()# # 打印dataframe表结构信息# init_df.printSchema()# 创建临时视图init_df.createTempView('words')# 数据处理"""sparksql方式处理数据-子查询1.先切分每一行的数据2.使用炸裂函数获得一个word单词列3.使用子查询方式聚合统计每个单词出现的次数"""spark.sql("""select word,count(*) as cnt from (select explode(split(value,' ')) as word from words)group by word order by cnt desc""").show()"""sparksql方式处理数据-侧视图1.先切分每一行的数据2.使用炸裂函数获得一个word单词列3.使用侧视图方式聚合统计每个单词出现的次数炸裂函数配合侧视图使用如下:格式:select 原表别名.字段名,侧视图名.字段名 from 原表 原表别名 lateral view explode(要炸开的字段)侧视图名 as 字段名"""spark.sql("""select word,count(*) as cntfrom words w lateral view explode(split(value,' ')) t as wordgroup by word order by cnt desc""").show()print('=' * 50)"""DSL方式处理数据-方式一1.先切分每一行的数据2.使用炸裂函数获得一个word单词列3.调用API聚合统计单词个数再排序"""init_df.select(F.explode(F.split('value', ' ')).alias('word')).groupBy('word').count().orderBy('count', ascending=False).show()"""DSL方式处理数据-方式二1.先切分每一行的数据2.使用炸裂函数获得一个word单词列3.调用API聚合统计单词个数再排序4.agg():推荐使用,更加通用。执行聚合操作。如果有多个聚合,聚合之间使用逗号分隔即可"""init_df.select(F.explode(F.split('value', ' ')).alias('word')).groupBy('word').agg(F.count('word').alias('cnt'),F.max('word').alias('max_word'),F.min('word').alias('min_word'),).orderBy('cnt', ascending=False).show()"""DSL方式处理数据-方式三withColumnRenamed(参数1,参数2):给字段重命名操作。参数1是旧字段名,参数2是新字段名withColumn(参数1,参数2):用来产生新列。参数1是新列的名称;参数2是新列数据的来源"""init_df.withColumn('word',F.explode(F.split('value', ' '))).groupBy('word').agg(F.count('word').alias('cnt'),F.max('word').alias('max_word'),F.min('word').alias('min_word')).orderBy('cnt', ascending=False).show()# 数据输出# 是否资源spark.stop()

数据写出操作

统一的输出语法:

对应的简写API格式如下,以CSV为例:
init_df.write.csv(
    path='存储路径',
    mode='模式',
    header=True,
    sep='\t',
    encoding='UTF-8'
)

输出到本地文件

常用参数说明:
    1- path:指定结果数据输出路径。支持本地文件系统和HDFS文件系统
    2- mode:当输出目录中文件已经存在的时候处理办法
        2.1- append:追加。如果文件已经存在,那么继续在该目录下产生新的文件
        2.2- overwrite:覆盖。如果文件已经存在,那么就先将已有的文件清除,再写入进去
        2.3- ignore:忽略。如果文件已经存在,那么不执行任何操作
        2.4- error:报错。如果文件已经存在,那么直接报错。会报错AnalysisException: path     
                    file:xxx already exists.
        
    3- sep:字段间的分隔符
    4- header:数据输出的时候,是否要将字段名称输出到文件的第一行。推荐设置为True
    5- encoding:文件输出的编码方式

 

# 直接基于DataFrame来处理
# 导包
import os
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, IntegerType, StringType, StructField
import pyspark.sql.functions as F# 绑定指定的python解释器
"""
基于RDD转换DataFrame的方式需求分析:1- 将每行内容切分得到单个的单词2- 组织DataFrame的数据结构2.1- 有两列。一列是单词,一列是次数
"""os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
# 创建main函数
if __name__ == '__main__':print('数据输出本地文件')# 创建Sparksession对象spark = SparkSession \.builder \.appName('api_etl_demo') \.master('local[*]') \.getOrCreate()# 数据输入init_df = spark.read.csv(path='file:///export/data/pyspark_projects/02_spark_sql/data/clear_data.csv',sep=',',header=True,inferSchema=True,encoding='utf8')# 数据处理result = init_df.where('age>20')# 数据查看result.show()result.printSchema()# 数据输出# 以csv格式输出,简写APIresult.write.csv(path='file:///export/data/pyspark_projects/02_spark_sql/data/output',mode='append',header=True,sep=',',encoding='utf8')# 以json方式输出到本地文件系统,复杂APIresult.write \.format('json') \.option('encoding', 'utf8') \.mode('overwrite') \.save('file:///export/data/pyspark_projects/02_spark_sql/data/output_json')

数据输出到数据库

数据库的驱动包, 一般都是一些Jar包

如何放置【mysql-connector-java-5.1.41.jar】驱动包呢?  
    1- 放置位置一: 当spark-submit提交的运行环境为Spark集群环境的时候,以及运行模式为local, 默认从 spark的jars目录下加载相关的jar包,
        目录位置: /export/server/spark/jars
    
    2- 放置位置二: 当我们使用pycharm运行代码的时候, 基于python的环境来运行的, 需要在python的环境中可以加载到此jar包
        目录位置:
            /root/anaconda3/lib/python3.8/site-packages/pyspark/jars/
    
    3- 放置位置三: 当我们提交选择的on yarn模式 需要保证此jar包在HDFS上对应目录下
        hdfs的spark的jars目录下:  hdfs://node1:8020/spark/jars
        

    请注意: 以上三个位置, 主要是用于放置一些 spark可能会经常使用的jar包, 对于一些不经常使用的jar包, 在后续spark-submit 提交运行的时候, 会有专门的处理方案:  spark-submit --jars  ....

将中文输出到了数据表中乱码
解决办法:
1- 数据库连接要加上:useUnicode=true&characterEncoding=utf-8
2- 创建数据库的时候需要指定编码character set utf8

# 直接基于DataFrame来处理
# 导包
import os
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, IntegerType, StringType, StructField
import pyspark.sql.functions as F# 绑定指定的python解释器
"""
基于RDD转换DataFrame的方式需求分析:1- 将每行内容切分得到单个的单词2- 组织DataFrame的数据结构2.1- 有两列。一列是单词,一列是次数
"""os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
# 创建main函数
if __name__ == '__main__':print('API的清洗')# 创建Sparksession对象spark = SparkSession \.builder \.appName('api_etl_demo') \.master('local[*]') \.getOrCreate()# 数据输入init_df = spark.read.csv(path='file:///export/data/pyspark_projects/02_spark_sql/data/clear_data.csv',sep=',',header=True,inferSchema=True,encoding='utf8')# 数据处理result = init_df.where('age>20')# 数据查看result.show()result.printSchema()# 数据输出# 以csv格式输出,简写APIresult.write.jdbc(url='jdbc:mysql://node1:3306/day06?useUnicode=true&characterEncoding=utf-8',table='student',mode='append',properties={'user': 'root', 'password': '123456'})

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/336512.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 在ios中u-input password显示密码 不生效

u-input组件的password属性在uniapp上多端开发,在小程序,H5上都没有问题,在App端有效,就是在ios中无效 找到u-input文件 修改源码 将原本的:password"password || type password || undefined加上||false即可

KEAZ128中MSCAN的同步时钟初始化失败已解决

文章目录 运行环境:MSCAN初始化成功代码初始化流程图初始化失败分析初始化异常原因 运行环境: MSCAN初始化代码(采用24MHz总线时钟当时不行,于是直接采用了外部晶振时钟16MHz) MSCAN初始化成功代码 void CAN_Init(uint_8 mode,uint_8 open…

java开发中如何使用定时任务

定时任务概述: 任务调度: 是指系统为了自动完成特定任务,在约定的特定时刻执行任务的过程。有了任务调度,即可解放更多的人力,而是由系统自动去执行任务。 常用业务场景案例: 某电商系统需要在每天上午10点…

CHS_03.1.3.3+系统调用

CHS_03.1.3.3系统调用 系统调用什么是系统调用,有何作用?系统调用又和普通的库函数的调用又有一定的区别为什么系统调用是必须的系统调用 按功能分类 可以分为这样的一些系统调用系统调用过程 这个小节的全部内容 系统调用 相关的知识 我们会为大家介绍什…

vulhub中的Apache HTTPD 多后缀解析漏洞详解

Apache HTTPD 多后缀解析漏洞 1.查看python版本 这里python版本很重要,因为版本过低可能会导致后面的结果运行不成功 这里我就遇到了因为版本过低而执行不了docker-compose up -d的情况 查看python版本 cd /usr/bin ls -al python* 当版本过低时安装高版本的 …

STM32-04-STM32时钟树

STM32时钟树 什么是时钟? 时钟是具有周期性的脉冲信号,最常用的是占空比50%的方波。(时钟是单片机的脉搏,搞懂时钟走向及关系,对单片机使用至关重要)。 时钟树 时钟源 2个外部时钟源 高速外部振荡器(HSE…

简单几个步骤几行代码一步一步掌握NLP自然语言处理通过Transformers模型实现包括情感分析,垃圾邮件检测,语法纠错,文本推理等

简单几个步骤几行代码一步一步掌握NLP自然语言处理通过Transformers模型实现包括情感分析,垃圾邮件检测,语法纠错,文本推理等。 垃圾邮件是广告、欺诈或其他不相关信息的电子邮件,给我们的日常工作和生活带来了困扰。为了有效过滤和阻止垃圾邮件的到达,我们需要使用各种判断…

安卓(雷电)模拟器清除屏幕密码

1、设置磁盘可写 启动模拟器,然后在模拟器的设置界面,设置磁盘共享为可写入,重启模拟器,如下图: 2、找到模拟器目录 返回桌面,右键模拟器图标,打开文件所在目录,如下图&#xff1a…

Spring MVC组件及RequestMapping注解

springmvc组件 DispatcherServlet前端控制器 用户请求到达前端控制器,它就相当于mvc模式中的c,dispatcherServlet 是整个流程控制的中心,由它调用其它组件处理用户的请求,dispatcherServlet 的存在降低了组件之间的耦合性。 Ha…

四、Java中SpringBoot组件集成接入【Knife4j接口文档(swagger增强)】

四、Java中SpringBoot组件集成接入【Knife4j接口文档(swagger增强)】 1.Knife4j介绍2.maven依赖3.配置类4.常用注解使用1.实体类及属性(ApiModel和ApiModelProperty)2.控制类及方法(Api、ApiOperation、ApiImplicitPar…

vue+springboot+mybatis-plus实现乡村公共文化服务系统

项目前端:https://gitee.com/anxin-personal-project/rural-public-cultural-services-front 项目后端:https://gitee.com/anxin-personal-project/rural-public-cultural-services-behind 1.系统简介 乡村公共服务文化提供给管理员、商家、村民。管理…

面相圆润是有福气的象征

在中国传统文化中,面相是一个非常重要的概念。相信大家肯定听说过“相由心生”这个成语吧,这就是告诉我们,一个人的面貌其实是可以反映出他内心的状态和气质,也可以反映其性格、健康状况和运势等。而一个圆润的面相,则…