理论U3 决策树

文章目录

  • 一、决策树算法
    • 1、基本思想
    • 2、构成
      • 1)节点
      • 3)有向边/分支
    • 3、分类步骤
      • 1)第1步-决策树生成/学习、训练
      • 2)第2步-分类/测试
    • 4、算法关键
  • 二、信息论基础
    • 1、概念
    • 2、信息量
    • 3、信息熵:
  • 二、ID3 (Iterative Dichotomiser 3)算法
    • 1、基本思想:
    • 2、熵引入
      • 1)经验熵
      • 2)条件熵
      • 3)经验条件熵
      • 4)信息增益(information gain)
    • 3、算法
    • 4、算法案例
    • 5、算法特点
  • 三、ID3算法问题
    • 1、 属性筛选度量标准
    • 2、 剪枝处理
      • 1)问题
      • 2)解决
      • 3)案例
    • 3、 连续值处理
    • 4、 缺失值处理
    • 5、不同代价属性的处理

一、决策树算法

1、基本思想

基本思想:采用自顶向下的递归方法,(以信息熵为度量)构造一棵(熵值下降最快的)树,(到叶子节点处的熵值为零)此时每个叶节点中的实例都属于同一类

2、构成

决策树是一种树型结构,由结点和有向边组成

1)节点

  1. 内部结点表示一个属性或特征
  2. 叶结点代表一种类别

3)有向边/分支

分支代表一个测试输出

3、分类步骤

1)第1步-决策树生成/学习、训练

利用训练集建立(并精化)一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程

step 1:选取一个属性作为决策树的根结点,然后就这个属性所有的取值创建树的分支。
step 2:用这棵树来对训练数据集进行分类:

  1. 如果一个叶结点的所有实例都属于同一类,则以该类为标记标识此叶结点。
  2. 如果所有的叶结点都有类标记,则算法终止
    step 3:否则,选取一个从该结点到根路径中没有出现过的属性为标记标识该结点,然后就这个属性所有的取值继续创建树的分支;重复算法步骤step 2

2)第2步-分类/测试

利用生成的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。

4、算法关键

建立决策树的关键,即在当前状态下选择哪个属性作为分类依据

目标:每个分支节点的样本尽可能属于同一类别,即节点的“纯度”(purity)越来越高;最具区分性的属性!
根据不同目标函数,建立决策树主要有以下三种算法
◼ ID3: 信息增益
◼ C4.5: 信息增益率
◼ CART:基尼指数

二、信息论基础

1、概念

信息论与概率统计中,熵表示随机变量不确定性的大小,是度量样本集合纯度最常用的一种指标

2、信息量

信息量:具有确定概率事件的信息的定量度量
定义: I ( x ) = − l o g 2 p ( x ) I(x)=-log_2p(x) I(x)=log2p(x) 其中p(x)为事件x发生的概率

3、信息熵:

事件集合的信息量的平均值。
定义: H ( x ) = ∑ i h ( x i ) = ∑ i p ( x i ) I ( x i ) = − ∑ i p ( x i ) l o g 2 p ( x i ) H(x) = \sum_{i}h(x_i)=\sum_{i} p(x_i)I(x_i)=-\sum_{i} p(x_i)log_2p(x_i) H(x)=ih(xi)=ip(xi)I(xi)=ip(xi)log2p(xi)

熵定义了一个函数(概率密度函数pdf)到一个值(信息熵)的映射

p ( x ) → H p(x) → H p(x)H (函数→数值)

熵是随机变量不确定性的度量:
◼ 不确定性越大,熵值越大
◼ 若随机变量退化成定值,熵为0
在这里插入图片描述

二、ID3 (Iterative Dichotomiser 3)算法

ID3算法是一种最经典的决策树学习算法。

1、基本思想:

以信息熵为度量,用于决策树节点的属性选择,每次优先选取信息增益最大的属性,亦即能使熵值变为最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0。此时,每个叶子节点对应的实例集中的实例属于同一类。

熵值下降 → 无序变有序

2、熵引入

1)经验熵

假设当前样本集合D 中第c(c=1,2,…,C)类样本所占比例为 p c p_c pc(c=1,2,…,C),则D 的经验信息熵(简称经验熵)定义为:

H ( D ) = − ∑ c = 1 C p c l o g 2 p c = − ∑ c = 1 C D c D l o g 2 D c D H(D)=-\sum_{c=1}^{C}p_clog_2p_c=-\sum_{c=1}^{C}\frac{D_c}{D}log_2\frac{D_c}{D} H(D)=c=1Cpclog2pc=c=1CDDclog2DDc

H(D)的值越小,则D 的纯度越高

2)条件熵

对随机变量 ( X , Y ) (X, Y) (X,Y),联合分布为: p ( X = x i , Y = y i ) = p i j p(X=x_i,Y=y_i)=p_{ij} p(X=xi,Y=yi)=pij

条件熵 H ( Y ∣ X ) H(Y |X ) H(YX) 表示在已知随机变量X 的条件下,随机变量Y的不确定性:

H ( Y ∣ X ) = − ∑ i = 1 n p i H ( Y ∣ X = x i ) H(Y|X)=-\sum_{i=1}^{n}p_iH(Y|X=x_i) H(YX)=i=1npiH(YX=xi)

可证明:条件熵𝐻(Y|X)相当于联合熵𝐻(𝑋,𝑌)减去单独的熵𝐻(X),即
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X)=H(X,Y)-H(X) H(YX)=H(X,Y)H(X)
在这里插入图片描述
在这里插入图片描述

3)经验条件熵

在这里插入图片描述
即特征a的信息对样本D 的信息的不确定性减少的程度

4)信息增益(information gain)

特征 a 对训练数据集 D 的信息增益 G ( D , a ) G(D, a) G(D,a) ,定义为集合D 的经验熵 H(D) 与特征 a 给定条件下 D 的经验条件熵 H ( D ∣ a ) H(D | a) H(Da) 之差,即
G ( D , a ) = H ( D ) − H ( D ∣ a ) = H ( D ) − ∑ n = 1 N D n D H ( D n ) G(D,a)=H(D)-H(D|a)=H(D)-\sum_{n=1}^{N}\frac{D^n}{D}H(D^n) G(D,a)=H(D)H(Da)=H(D)n=1NDDnH(Dn)

ID3算法即是以此信息增益为准则,对每次递归的节点属性进行选择的

3、算法

在这里插入图片描述

4、算法案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、算法特点

最大优点是,它可以自学习:在学习的过程中,不需要使用者了解过多背景知识,只需要对训练实例进行较好的标注,就能够进行学习。

决策树的分类模型是树状结构,简单直观,比较符合人类的理解方式。

可将决策树中到达每个叶节点的路径转换为IF—THEN形式的分类规则,这种形式更有利于理解。

从一类无序、无规则的事物(概念)中推理出决策树表示的分类规则。

三、ID3算法问题

信息增益偏好取值多的属性(分散,极限趋近于均匀分布)

1、 属性筛选度量标准

可能会受噪声或小样本影响,易出现过拟合问题。
结果训练出来的形状是一棵庞大且深度很浅的树,这样的划分是极为不合理的。
改进方法
在这里插入图片描述
在这里插入图片描述

2、 剪枝处理

1)问题

无法处理连续值的属性。

决策树对训练数据有很好的分类能力,但对未知的测试数据未必有好的分类能力,泛化能力弱,即可能发生过拟合现象。

训练数据有噪声,对训练数据拟合的同时也对噪音进行拟合,影响了分类效果。

叶节点样本太少,易出现耦合的规律性,使一些属性恰巧可以很好地分类,但却与实际的目标函数并无关系。

2)解决

剪枝是决策树学习算法中对付“过拟合”的主要手段

  1. 预剪枝策略(pre-pruning)
    决策树生成过程中,对每个节点在划分前进行估计,若划分不能带来决策树泛化性能提升,则停止划分,并将该节点设为叶节点
    优点:预剪枝“剪掉了”很多没必要展开的分支,降低了过拟合的风险,并且显著减少了决策树的训练时间开销和测试时间开销
    劣势:有些分支的当前划分有可能不能提高甚至降低泛化性能,但后续划分有可能提高泛化性能;预剪枝禁止这些后续分支的展开,可能会导致欠拟合

  2. 后剪枝策略(post-pruning)
    先利用训练集生成决策树,自底向上对非叶节点进行考察,若将该叶节点对应子树替换为叶节点能带来泛化性能提升,则将该子树替换为叶节点
    优点:优势:测试了所有分支,比预剪枝决策树保留了更多分支,降低了欠拟合的风险,泛化性能一般优于预剪枝决策树。
    劣势:后剪枝过程在生成完全决策树后在进行,且要自底向上对所有非叶节点逐一评估;因此,决策树的训练时间开销要高于未剪枝决策树和预剪枝决策树

3)案例

在这里插入图片描述
预剪枝算法
在这里插入图片描述
在这里插入图片描述
后剪枝算法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、 连续值处理

无法处理属性值不完整的训练数据
在这里插入图片描述
基本思想:采用二分法(bi-partition)进行离散化
在这里插入图片描述
在这里插入图片描述

4、 缺失值处理

无法处理不同代价的属性
前面假设:所有样本的属性完整
实际情况:存在不完整样本:即样本的某些属性缺失;特别是属性数目较多时
如果简单放弃不完整样本,会导致数据信息的浪费
实际中确实需要属性缺失情况下进行决策
不同代价属性的处理
需要解决的两个问题

  1. 如何在属性值缺失的情况下进行划分属性选择(计算信息增益)?
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  2. 给定划分属性,若样本在该属性上的值缺失,如何对样本进行划分?
    在这里插入图片描述
    案例:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

5、不同代价属性的处理

不同的属性测量具有不同的代价
在属性筛选度量标准中考虑属性的不同代价
优先选择低代价属性的决策树
必要时才依赖高代价属性
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/341994.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT 文本框的绘制与复选框组键

.cpp文件 #include "widget.h" #include "ui_widget.h"#include<QDebug> Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//更改窗口标题setWindowTitle("我爱xyy");//更改图标setWindow…

【高级应用】Flink Cep模式匹配

什么是Cep&#xff1f; 在流式数据中&#xff08;事件流&#xff09;&#xff0c;筛选出符合条件的一系列动作&#xff08;事件&#xff09;【复杂事件处理】 什么是 Flink-Cep&#xff1f; Flink Cep库Api 【实时操作】 官方文档 什么是Pattern&#xff1f; Pattern就是…

书客、柏曼、松下护眼台灯哪款更靠谱?实测核心数据对比PK!

随着科技时代的到来&#xff0c;人们的生活水平在不断提高&#xff0c;不少家长开始担心自家孩子的近视问题&#xff0c;护眼台灯在家庭中的讨论热度也越来越高&#xff0c;光线舒适又具备多种功能&#xff0c;不少家长都给孩子入手了护眼台灯。不过作为家电博主&#xff0c;我…

一天一个设计模式---适配器模式

概念 适配器模式是一种结构型设计模式&#xff0c;用于将一个类的接口转换成客户端所期望的另一个接口。它允许不兼容的接口之间进行协同工作&#xff0c;使得原本由于接口不匹配而无法合作的类能够一起工作。 具体内容 适配器模式主要包括以下几个要素&#xff1a; 目标接…

Open CV 图像处理基础:(一)Open CV 在windows环境初始化和 Java 动态库加载方式介绍

Open CV 在windows环境初始化和 Java 动态库加载方式介绍 目录 Open CV 在windows环境初始化和 Java 动态库加载方式介绍OpenCV安装opencv-4.4.0下载安装 加载opencv-4.4.0.jar包jar包引入mavn-init.cmdjar包装载到本地maven仓库pom.xml加载动态库 加载动态库opencv_java440.dl…

2023一带一路暨金砖国家技能发展与技术创新大赛“网络安全”赛项省选拔赛样题卷①

2023金砖国家职业技能竞赛"网络安全" 赛项省赛选拔赛样题 2023金砖国家职业技能竞赛 省赛选拔赛样题第一阶段&#xff1a;职业素养与理论技能项目1. 职业素养项目2. 网络安全项目3. 安全运营 第二阶段&#xff1a;安全运营项目1. 操作系统安全配置与加固任务一Linux …

深度学习”和“多层神经网络”的区别

在讨论深度学习与多层神经网络之间的差异时&#xff0c;我们必须首先理解它们各自是什么以及它们在计算机科学和人工智能领域的角色。 深度学习是一种机器学习的子集&#xff0c;它使用了人工神经网络的架构。深度学习的核心思想是模拟人脑神经元的工作方式&#xff0c;以建立…

FPGA——时序分析与约束(Quartus II)

FPGA时序分析与约束 FPGA结构基础数据传输模型Quartus II 时序报告Quartus II 中TimeQuest的操作实操 时序分析&#xff1a;通过分析FPGA内部各个存储器之间的数据和时钟传输路径&#xff0c;来分析数据延迟和时钟延迟的关系&#xff0c;保证所有寄存器都可以正确寄存数据。 数…

The Planets:Earth

靶机下载 The Planets: Earth ~ VulnHub 信息收集 # nmap -sn 192.168.1.0/24 -oN live.nmap Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-11 09:20 CST Nmap scan report for 192.168.1.1 Host is up (0.00036s latency). MAC Address: …

使用numpy处理图片——图片拼接

大纲 左右拼接上下拼接 在《使用numpy处理图片——图片切割》一文中&#xff0c;我们介绍了如何使用numpy将一张图片切割成4部分。本文我们将反其道而行之&#xff0c;将4张图片拼接成1张图片。 基本的思路就是先用两张图以左右结构拼接成上部&#xff0c;另外两张图也以左右拼…

org.springframework.web.servlet.HandlerInterceptor

过期 1 配置黑名单 2 启动注册拦截 3 浏览器访问拦截

C#考勤系统数据分析源码

C#考勤系统数据分析源码 源码描述&#xff1a; 针对大部分考勤机采用E语言和ACCESS数据库做系统的缺陷。 做出如下建议&#xff1a; 1.打卡机设置成直接续传数据到SQL Server&#xff0c;不需要开着考勤系统和考勤安装的电脑去维持打卡记录 2.打卡机数据共享&#xff0c;把内部…