2024年美国大学生数学建模思路 - 复盘:校园消费行为分析

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/346206.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

黑马程序员 Docker笔记

本篇学习笔记文档对应B站视频&#xff1a; 暂时无法在飞书文档外展示此内容 同学们&#xff0c;在前两天我们学习了Linux操作系统的常见命令以及如何在Linux上部署一个单体项目。大家想一想自己最大的感受是什么&#xff1f; 我相信&#xff0c;除了个别天赋异禀的同学以外&a…

不要再搞混标准化与归一化啦,数据标准化与数据归一化的区别!!

数据标准化与归一化 1. 数据的标准化&#xff08;Standardization&#xff09;&#xff1a;2. 数据的归一化&#xff08;Normalization&#xff09;&#xff1a;总结&#xff08;数据标准化和数据归一化的不同之处和相同之处&#xff09; 1. 数据的标准化&#xff08;Standardi…

【LabVIEW FPGA 编程入门】使用FPGA IO进行编程

1.在项目中新建一个VI&#xff0c;命名为FPGA IO Test。 2. 可以直接将项目中的FPGA IO拖入程序框图中。 FPGA IO的类型&#xff1a; 数字线&#xff1a; 数字端口&#xff1a; 模拟IO&#xff1a; 其他&#xff1a; 3.如果新增加了FPGA资源&#xff0c;不是创建项目时扫描到的…

【数据结构】二叉树问题总结

目录 1.二叉树前序遍历&#xff0c;中序遍历和后序的实现 2.层序遍历 3.求二叉树中的节点个数 4.求二叉树中的叶子节点个数 5.求二叉树的高度 6.求二叉树第k层节点个数 7.二叉树查找值为x的节点 8.单值二叉树 9.二叉树最大深度 10.翻转二叉树 11. 检查两颗树是否相同…

【SAP】如何删除控制范围

经历就是财富&#xff0c;可你终将遗忘。期望文字打败时间。 本周心惊胆战地在配置系统删除了一个控制范围&#xff0c;还是有些收获&#xff0c;特此记录一下。 背景&#xff1a;在删除控制范围之前&#xff0c;我主要做了如下配置。 定义控制范围&#xff08;自动生成了成本…

Unable to find node on an unmounted component in React

小众错误一枚&#xff0c;网上都说需要react版本没有升级原因&#xff0c;因为是内部错误&#xff0c;控制台又无法定位到代码哪一行报错&#xff0c;网上又没有类似的解决方法&#xff0c;特此记录思路&#xff0c;供大家参考。 通过网上说的版本原因&#xff0c;合理推测是因…

如何创建并格式化硬盘分区?

一般将新硬盘连接到计算机后&#xff0c;需先创建并格式化硬盘分区。否则在磁盘管理中会显示为“未分配空间”&#xff0c;并在文件资源管理器中不可见。那我们如何在硬盘上创建新分区&#xff0c;并对新分区进行格式化&#xff1f; 方法1. 通过命令提示符 首先&#xff0c;我…

C#,入门教程(17)——条件语句(if-else)的基础知识

上一篇&#xff1a; C#&#xff0c;入门教程(16)——可变数据类型&#xff08;var&#xff09;的基础知识与使用禁忌https://blog.csdn.net/beijinghorn/article/details/124032216 程序的核心是逻辑。 逻辑的核心是布尔条件表达式。 逻辑的主要体现形式之一是 if-else 语句…

Unity中URP中的光照简介

文章目录 前言URP下的光照在Unity中的设置1、主灯设置2、额外灯设置3、反射光设置 前言 我们在这篇文章开始了解URP下的光照。 URP下的光照在Unity中的设置 1、主灯设置 主灯可以选择 禁用 或 逐像素 光照 当选择逐像素光照的主灯后 Cast Shadows&#xff1a;可以选择开启 或…

Redis 中的哨兵选举算法是如何实现的?

“Redis 中的哨兵选举算法是如何实现的&#xff1f;” 昨天&#xff0c;一个工作 7 年的粉丝&#xff0c;去某外包公司面试&#xff0c;被问到这个问题不知道该怎么回答。 今天正好有空&#xff0c;给大家分享一下这个问题的回答思路。 对了&#xff0c;这个问题在我之前整理…

2024年【上海市安全员C3证】考试报名及上海市安全员C3证考试资料

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 上海市安全员C3证考试报名根据新上海市安全员C3证考试大纲要求&#xff0c;安全生产模拟考试一点通将上海市安全员C3证模拟考试试题进行汇编&#xff0c;组成一套上海市安全员C3证全真模拟考试试题&#xff0c;学员可…

Redis:原理速成+项目实战——Redis实战14(BitMap实现用户签到功能)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;Redis&#xff1a;原理速成项目实战——Redis实战13&#xff08;GEO实现附近商铺、滚动分页查询&#xff09; &#x1f4da;订阅…