2018年认证杯SPSSPRO杯数学建模A题(第一阶段)海豚与沙丁鱼全过程文档及程序

2018年认证杯SPSSPRO杯数学建模

探究海豚猎捕时沙丁鱼群的躲避运动模型

A题 海豚与沙丁鱼

原题再现:

  沙丁鱼以聚成大群的方式来对抗海豚的捕食。由于水下光线很暗,所以在距离较远时,海豚只能使用回声定位方法来判断鱼群的整体位置,难以分辨每个个体。鱼群的行动是有协调性的,在没有外部威胁或障碍物时,鱼群常常会聚成接近球形的形态。而当海豚接触甚至冲进鱼群,鱼群则会进行协同的躲避,所以不易在大鱼群中追踪一个目标。沙丁鱼的这种群体行为降低了其被海豚捕食的概率。
  第一阶段问题: 请你建立合理的数学模型来描述沙丁鱼群在遇到一条海豚捕食时的运动规律。

整体求解过程概述(摘要)

  沙丁鱼为细长的银色小型鱼,游泳迅速,没有外部威胁时鱼群常聚成接近球形的形态,而当捕食者进攻时会进行协同的躲避,从而降低其被捕食的概率。本文基于沙丁鱼群遭遇一条海豚捕食时的情景,研究沙丁鱼群对应的运动规律。考虑到海豚和沙丁鱼群的同向、相向运动,以及二者之间的距离,分析海豚进击模型。当距离较远时,海豚通过回声定位来判断鱼群的整体位置,此时沙丁鱼群并未意识到威胁的存在,以接近球形的形态稳定行进。考虑个体视野范围以及速率差异,改进 Boid 模型,建立无序聚集运动模型;并划分感知区域,降维构建有序环绕运动模型。
  当海豚进攻沙丁鱼群时,鱼群进行协同躲避。考虑二者的相向、同向运动,分析四种外部空间结构(中空包围状、沙漏状、密集球状、驱赶聚集状)的动态变化。构造个体沙丁鱼安全场,划分为紧急逃离区域和适度逃离区域,分析各区域内影响个体沙丁鱼运动速度矢量的多种因素,采用主层次分析法提取出不同空间结构下不同区域内的主因子,建立四种空间结构下鱼群的躲避模型。考虑沙丁鱼空间密度等因素,引入随机森林算法对海豚捕食模型进行训练,动态优化四种躲避模型下沙丁鱼被捕食的概率结果,分析沙丁鱼群最优逃逸方式及运动规律。
  采集大自然中海豚捕食沙丁鱼群的场景,提取图片中的数据信息进行模型的验证,结果表明:沙丁鱼群遭遇一条海豚捕食时会优选呈中空包围状和密集球状进行逃逸。

问题分析:

  出于生存、避险、觅食等原因,鱼类的行为方式往往表现为群体行为,沙丁鱼往往以聚成大群的方式来对抗海豚的捕食。鱼群的行动是有协调性的,在没有外部威胁或障碍物时,鱼群常常会聚成接近球形的形态。而当海豚接触甚至冲进鱼群,一方面当近处的鱼快速逃避时,会给猎手海豚一个严重的心理错觉,以为远处的鱼还没发觉,于是扑向另外的对象。然而,鱼本身的侧线反馈机制会使远处的鱼逃避得更快,从而导致海豚找不到具体的目标,一无所获。
  此外,鱼类集群运动机理的研究涉及团体动力学、集群行为学等领域,围绕该方向的研究主要分为两大流派:一类是利用理论推导和应用已有的结论,试图去理解鱼类集群行为的内在原因,另一类是从鱼类的实际集群运动和个体鱼的特征出发,通过搭建模型去探索鱼类实际集群运动中存在的规律。由上述分析可以将海豚的捕食过程分为发现目标后的匀速前进阶段、变加速阶段、猛击捕食阶段。基于海豚的捕食过程,可以沙丁鱼群的存在状态分为稳定状态和躲避状态。由于鱼群的形成是由个体逐渐汇集而成,所以可以将沙丁鱼的稳定状态分为无序聚集状态和有序环绕状态。沙丁鱼在逃避过程中,沙丁鱼群群体的形状、空间分布、结构等是处于不断变化的过程中,鱼群在遇到外部攻击时,鱼群的外部空间结构会出现动态变化,会呈现驱赶聚集状、中空包围状、沙漏状和密集球状。
  建立数学模型来描述沙丁鱼群在遇到一条海豚捕食时的运动规律的实质就在于深入分析沙丁鱼群稳定集群模型、海豚的进击捕食模型以及沙丁鱼群多种的逃避模型,进而实现动态分析、动态寻优的过程。本文基于分析已有资料,采用从个体到局部、从局部到整体的思想,以 Boid 模型为基础,通过部分改良提出沙丁鱼群的无序聚集运动模型;采用降维的方法将三维模型降为二维模型,提出沙丁鱼稳定环绕状态模型以分析沙丁鱼的有序环绕运动。结合海豚的进击捕食模型,基于主成分分析方法简化沙丁鱼的运动方程,建立模型模拟驱赶聚集状、中空包围状、沙漏状和密集球状四种逃避轨迹,分析沙丁鱼在四种逃避状态下的被捕食概率,探索有利于沙丁鱼群体进化的最优逃避方式。

模型假设:

  1. 假设本文中的个体沙丁鱼的一般游动是随机性的;
  2. 假设每个沙丁鱼个体能够感知其在群体中的位置;
  3. 该沙丁鱼群不受环境变化影响(地震、海啸等自然灾害);
  4. 假设沙丁鱼群中的个体是存在部分差异的,主要表现为尺寸上的大、小两种;
  5. 本文中模型所涉及的鱼群数量在短期内是不发生变化的(被海豚捕食情况除外),即不考虑个体沙丁鱼的突发死亡等非一般状况。

论文缩略图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

clear;
clc;
n=400;
x(1,:)=10*rand(1,n);
y(1,:)=10*rand(1,n);
drc(1,:)=(rand(1,n)-0.5)*2*pi;
d=[];
for k=1:80for i=1:nfor j=1:nd(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2);endendfor i=1:nd(i,i)=inf;endfor i=1:na=0;b=1;c=0;e=0;h=0;l=0;for j=1:nif d(i,j)<5a=a+1;c=c+x(j);e=e+y(j);m=atan(y(j)/x(j));l=l+m;endif d(i,j)<1b=b+1;g=atan((y(j)-y(i))/(x(j)-x(i)));h=h+g;endendD2=atan(e/a-y(i))/(c/a-x(i));D3=1/a;D4=h/b;drc(k+1,i)=0.4*drc(k,i)+0.3*D2+0.2*D3+0.1*D4;v=0.5;endfor i=1:nx(k+1,i)=x(k,i)+v*cos(drc(k+1,i))*1;
y(k+1,i)=y(k,i)+v*sin(drc(k+1,i))*1;if x(k+1,i)>30x(k+1,i)=x(k+1,i)-30;elseif x(k+1,i)<0x(k+1,i)=x(k+1,i)+30;endif y(k+1,i)>30y(k+1,i)=y(k+1,i)-30;elseif y(k+1,i)<0y(k+1,i)=y(k+1,i)+30;endend
end
for i=1:k%pause(0,1)plot(x(i,:),y(i,:),'.')axis([0 30 0 30])getframe
end
clear;
clc;
t=1;n=500;
x=[];y=[];xs=[];
x(1,:)=30*rand(1,n);y(1,:)=30*rand(1,n);
draction(1,:)=(rand(1,n)-0.5)*2*pi;
d=[];a=0;
xs(1,:)=30*rand(1,1);ys(1,:)=30*rand(1,1);
dractions(1,1)=(rand(1,1)-0.5)*2*pi;
for k=1:200dractions(k+1,1)=dractions(k,1);vs(k+1,1)=0.4;xs(k+1,1)=xs(k,1)+vs(k+1,1)*cos(dractions(k+1,1))*1;ys(k+1,1)=ys(k,1)+vs(k+1,1)*sin(dractions(k+1,1))*1;if xs(k+1,1)>30xs(k+1,1)=xs(k+1,1)-30;elseif xs(k+1,1)<0xs(k+1,1)=xs(k+1,1)+30;endif ys(k+1,1)>30ys(k+1,1)=ys(k+1,1)-30;elseif ys(k+1,1)<0ys(k+1,1)=ys(k+1,1)+30;end
for i=1:nds(i)=sqrt((x(k,i)-xs(k,1))^2+(y(k,i)-ys(k,1))^2);for j=1:nd(i,j)=sqrt((x(k,i)-x(k,j))^2+(y(k,i)-y(k,j))^2);endendfor i=1:nd(i,i)=inf;endfor i=1:nA=0;B=0.1;for j=1:nif d(i,j)<0.3A=A-draction(k,j)/d(i,j);B=B-1/d(i,j);if A~=0draction(k+1,i)=(1-t)*draction(k,i)-t*j/B;else draction(k+1,i)=draction(k,i);endelseif d(i,j)<5&&d(i,j)>=0.2A=A-draction(k,j)/d(i,j);B=B-1/d(i,j);if A~=0draction(k+1,i)=(1-t)*draction(k,i)+t*j/B;else draction(k+1,i)=draction(k,i);endendendif ds(i)<5a=a+1;%prevx=x;%prevy=y;if x(k,i)>xs(k,1)draction(k+1,i)=atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)));endif x(k,i)<xs(k,1)draction(k+1,i)=atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)))+pi;endendif ds(i)>=5&&ds(i)<10draction(k+1,i)=pi/2;endif ds(i)>=10&&ds(i)<20if x(k,i)>xs(k,1)
draction(k+1,i)=-atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)));endif x(k,i)<xs(k,1)draction(k+1,i)=-atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)))+pi;endendv(k+1,i)=0.2;end%×ø±ê¸üÐÂfor i=1:nif ds(i)<10x(k+1,i)=x(k,i)+v(k+1,i)*cos(draction(k+1,i))*1.5;y(k+1,i)=y(k,i)+v(k+1,i)*sin(draction(k+1,i))*1.5;elseif ds(i)>=10x(k+1,i)=x(k,i)+v(k+1,i)*cos(draction(k+1,i))*1;y(k+1,i)=y(k,i)+v(k+1,i)*sin(draction(k+1,i))*1;endif x(k+1,i)>30x(k+1,i)=x(k+1,i)-30;elseif x(k+1,i)<0x(k+1,i)=x(k+1,i)+30;endif y(k+1,i)>30y(k+1,i)=y(k+1,i)-30;elseif y(k+1,i)<0y(k+1,i)=y(k+1,i)+30;endend
end
for i=1:kpause(0.2)plot(x(i,:),y(i,:),'.',xs(i,:),ys(i,:),'ro','markersize',12)title('沙丁鱼群躲避海豚捕食的二维图')xlabel('x');ylabel('y');%legend('沙丁鱼','海豚')axis([0 30 0 30])getframe;
end
clear all
clc
warning off
load data.mat %储存数据信息
a = randperm(30);
Train = data(a(1:25),:);
Test = data(a(26:end),:);
P_train = Train(:,3:end);
T_train = Train(:,2);
P_test = Test(:,3:end);
T_test = Test(:,2);
model = classRF_train(P_train,T_train);
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/413013.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt编程之仿gnome-terminal终端样式 +颜色文字显示

Qt仿linux 终端样式 颜色文字 1.说再多废话不如直接show code2.实现效果 本文采用QTextBrowser作为文本显示窗口&#xff0c;进行文本的显示。本文实例实现的效果并没有终端的输入效果&#xff0c;这里只是提供一些仿终端样式思路。 1.说再多废话不如直接show code 1.ui文件…

FFmpeg之AVFormat

文章目录 一、概述二、解封装流程三、重要结构体3.1、AVFormatContext3.2、AVInputFormat3.3、AVOutputFormat3.4、AVStream 四、重要函数分析4.1、avformat_alloc_context4.2、avformat_open_input4.2.1、init_input4.2.2、av_probe_input_format2 4.3、avformat_find_stream_…

Unity3D和three.js的比较

一、Unity3D和three.js简介 Unity3D是一款跨平台的游戏引擎,可以用于开发2D和3D游戏。它提供了一个可视化的开发环境,包含了强大的编辑器和工具,使开发者可以方便地创建游戏场景、添加物体、设置物理效果、编写脚本等。Unity3D支持多种平台,包括PC、移动设备、主机等,可以…

Windows10系统下的Java环境变量配置

Windows10系统下的Java环境变量配置 1.准备java的jdk2.安装JDK--全部选择下一步3.如果安装的jdk环境没有自动配置,需要以下操作进行手动配置4.点击环境变量5.在系统变量的情况下进行新建6.这个路径是默认安装的是jdk默认安装配置的环境变量:7.java在安装的时候相当于把上面命令…

自建服务器如何备案?

随着互联网的普及和发展&#xff0c;越来越多的人开始考虑自建服务器。然而&#xff0c;在中国大陆地区&#xff0c;自建服务器需要进行备案。本文将介绍自建服务器备案的流程、所需材料以及注意事项。 一、备案流程 确定备案地区 根据《中华人民共和国计算机信息网络国际联网…

rabbitmq-java基础详解

一、rabbitmq是什么&#xff1f; 1、MQ定义 MQ&#xff08;Message Queue&#xff09;消息队列 主要解决&#xff1a;异步处理、应用解耦、流量削峰等问题&#xff0c;是分布式系统的重要组件&#xff0c;从而实现高性能&#xff0c;高可用&#xff0c;可伸缩和最终一致性的架…

【MATLAB随笔】GUI编程(未完结)

文章目录 一、创建GUI图窗1.1 使用figure 函数1.11 窗口标识1.12 窗口外观1.13 位置和大小1.14 绘图1.15 交互性 1.2 使用uifigure函数 二、 添加GUI控件2.1 uicontrol&#xff08;适用于figure&#xff09;2.11 控件类型2.12 文本和样式2.13 字体待续 一、创建GUI图窗 跟很多…

过滤器、拦截器、AOP、ControllerAdvcie执行顺序对比

过滤器Filter 简介 来自J2EE中的Servlet技术实现原理&#xff1a;基于servlet的函数回调实现只可以获取到请求中的request和response&#xff0c;无法获取到响应方法的信息可以拦截所有请求支持使用xml配置和注解配置应用场景&#xff1a;权限认证、敏感词检测、访问日志记录…

数组练习 Leetcode 566.重塑矩阵

在 MATLAB 中&#xff0c;有一个非常有用的函数 reshape &#xff0c;它可以将一个 m x n 矩阵重塑为另一个大小不同&#xff08;r x c&#xff09;的新矩阵&#xff0c;但保留其原始数据。 给你一个由二维数组 mat 表示的 m x n 矩阵&#xff0c;以及两个正整数 r 和 c &#…

大模型关键技术:上下文学习、思维链、RLHF、参数微调、并行训练、旋转位置编码、模型加速、大模型注意力机制优化、永久记忆、LangChain、知识图谱、多模态

大模型关键技术 大模型综述上下文学习思维链 CoT奖励建模参数微调并行训练模型加速永久记忆&#xff1a;大模型遗忘LangChain知识图谱多模态大模型系统优化AI 绘图幻觉问题从 GPT1 - GPT4 拆解GPTs 对比主流大模型技术点旋转位置编码层归一化激活函数注意力机制优化 大模型综述…

关于python环境变量相关的配置汇总(venv虚拟环境/conda环境/pip相关)

关于python环境变量相关的配置汇总(venv虚拟环境/conda环境/pip相关) 本文作者&#xff1a; slience_me 文章目录 关于python环境变量相关的配置汇总(venv虚拟环境/conda环境/pip相关)1. python环境配置相关1.1 系统环境1.2 Anaconda环境相关1.2.1 安装1.2.2 查看python环境 1.…

k8s---pod控制器

pod控制器发的概念&#xff1a; 工作负载&#xff0c;workload用于管理pod的中间层&#xff0c;确保pod资源符合预期的状态。 预期状态&#xff1a; 1、副本数 2、容器重启策略 3、镜像拉取策略 pod出故障的出去等等 pod控制器的类型&#xff1a; 1、replicaset&#xf…