参考书籍《机器学习和深度学习:原理、算法、实战》
文章目录
- 1 工业界流行的机器学习算法
- 2 机器学习
- 3 深度学习
- 4 预备知识
- 5 监督学习与无监督学习
1 工业界流行的机器学习算法
- 线型回归
- 逻辑回归
- 决策树
- 随机森林
- 梯度提升机
- 人工神经网络
- 卷积神经网络
- 循环神经网络
- 贝叶斯技术
- 支持向量机
- 进化方法
- 马尔可夫逻辑网络
- 隐马尔可夫模型
- 生成对抗网络
2 机器学习
机器学习也被称为增强分析,被认为是人工智能的一个子集,与计算统计学密切相关。机器学习预测未来的准确率会随着经验积累而提高,为了达到目标准确率,机器学习算法需要用训练数据来进行训练。
典型的机器学习例程如下图所示:
3 深度学习
深度学习是机器学习算法的一个子集,又称分层学习,给定原始输入数据,深度学习逐步从多个层次中提取更高层次的表征,深度学习技术一个常用领域是图像学习。
4 预备知识
- 线型代数:标量、向量及其运算;特征值和特征向量;常用矩阵运算
- 初等微积分(高等数学):函数、导数、偏导数、微分、梯度、基本积分
- 基本统计学和概率论:总体、样本、变量及其分类、均值、中位数、众数、参数、统计量、分布测度、定量和定性分析实例、概率论的基本理论和相关概念
- 编程基础:python(基础语法、NumPy、Pandas)->TensorFlow(开源库,丰富的工具)
5 监督学习与无监督学习
- 监督学习:典型算法有分类和回归算法,需要训练模型
- 无监督学习:典型算法有聚类分析,不需要预先训练模型