Oracle行转列函数,列转行函数

Oracle行转列函数,列转行函数

Oracle 可以通过PIVOT,UNPIVOT,分解一行里面的值为多个列,及来合并多个列为一行。

PIVOT

PIVOT是用于将行数据转换为列数据的查询操作(类似数据透视表)。通过使用PIVOT,您可以按照特定的列值将数据进行汇总,并将其转换为新的列。

语法

pivot(聚合函数 for 需要转为列的字段名 in(需要转为列的字段值))

SELECT *
FROM (-- 源数据查询SELECT column1, column2, ..., pivot_column, value_columnFROM your_source_table
)
PIVOT (-- 聚合函数和列定义aggregate_function(value_column)FOR pivot_column IN (value1 AS alias1, value2 AS alias2, ..., valuen AS aliasn)
);
  • aggregate_function:指定用于对value_column进行聚合操作的函数,如SUMAVG等。(FOR关键字前面的部分只能使用聚合函数)

  • value_column: 指定要聚合的源数据列。

  • pivot_column: 指定要透视的列,其唯一值将被用作新列的列头。且源数据查询的select中必须包含这个字段,以便PIVOT函数可以使用到它。(可以理解为用这个字段来进行group by

  • value1 AS alias1, value2 AS alias2, ..., valuen AS aliasn: 为透视列的每个唯一值指定一个别名,这些别名将成为新列的列头。遗憾的是这里不是使用子查询

准备

CREATE TABLE sales_data (product_name VARCHAR2(100),region VARCHAR2(50),sale_month VARCHAR2(10),sale_amount NUMBER
);
-- 商品 A 在不同地区的销售数据
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'North', '2024-01', 5000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'South', '2024-01', 7000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'West', '2024-01', 4500);INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'North', '2024-02', 8000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'South', '2024-02', 7500);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'West', '2024-02', 6000);INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'North', '2024-03', 7000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'South', '2024-03', 8500);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product A', 'West', '2024-03', 6200);-- 商品 B 在不同地区的销售数据
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'North', '2024-01', 6000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'South', '2024-01', 8000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'West', '2024-01', 5500);INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'North', '2024-02', 7000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'South', '2024-02', 9000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'West', '2024-02', 6500);INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'North', '2024-03', 7800);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'South', '2024-03', 9200);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product B', 'West', '2024-03', 6900);-- 商品 C 在不同地区的销售数据
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'North', '2024-01', 5500);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'South', '2024-01', 6000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'West', '2024-01', 4800);INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'North', '2024-02', 6500);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'South', '2024-02', 7000);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'West', '2024-02', 5800);INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'North', '2024-03', 7200);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'South', '2024-03', 7800);
INSERT INTO sales_data (product_name, region, sale_month, sale_amount) VALUES ('Product C', 'West', '2024-03', 6000);

样例一

-- 每个商品在不同的地区的总销售额SELECTproduct_name,region,sum( SALE_AMOUNT ) 
FROMsales_data 
GROUP BYproduct_name,region 
ORDER BYproduct_name,region 

这样是一行一行显示的,我们来转换为一列一列的显示。

-- 以商品为行 地区为列
SELECT* 
FROM( SELECT product_name, region, SALE_AMOUNT  FROM sales_data ) PIVOT ( sum( SALE_AMOUNT ) FOR region IN ( 'North', 'South', 'West' ) ) ORDER BY product_name 

-- 已地区为行 商品为列
SELECT* 
FROM( SELECT product_name, region, SALE_AMOUNT  FROM sales_data ) PIVOT ( sum( SALE_AMOUNT ) FOR product_name IN ( 'Product A', 'Product B', 'Product C' ) ) ORDER BY region 

多个聚合函数

每个商品在不同地区的销售总额,每个商品在不同地区的销售平均值

SELECT* 
FROM( SELECT product_name, region, SALE_AMOUNT FROM sales_data ) PIVOT ( sum( SALE_AMOUNT ),avg( SALE_AMOUNT ) FOR product_name IN ( 'Product A', 'Product B', 'Product C' ) ) ORDER BY region ;
-- > ORA-00918: 未明确定义列  
-- 这样直接写两个聚合函数在pivot里面是会报错。是因为两个聚合函数都没有使用,默认是使用in里面的值作为列名。
-- 所以当我们在使用多个聚合函数的时候需要至少一个为聚合函数指定 as
SELECT* 
FROM( SELECT product_name, region, SALE_AMOUNT  FROM sales_data ) PIVOT ( sum( SALE_AMOUNT ) as sum,avg( SALE_AMOUNT )as avg FOR product_name IN ( 'Product A', 'Product B', 'Product C' ) ) ORDER BY region ;

1705485249575(1)

注意

我这里用了select再给嵌套了一层,并且去掉了Name字段。

为什么?

我们使用select*试试。

SELECT* 
FROMsales_data PIVOT ( sum( SALE_AMOUNT ) AS sum, avg( SALE_AMOUNT ) AS avg FOR product_name IN ( 'Product A', 'Product B', 'Product C' ) ) 
ORDER BYregion

会发现想象的不太一样。😂

其实,这是因为pivot会以移出pivot_columnvalue_column后的字段组合当成唯一键(就类似以那几个字段group by)。

所以直接使用 pivot这个查询翻译成自然语言就是:查询每个地区,每个月的,商品的销售额。

多个FOR

也就是自己查询 对于product_name,region,销售额的总和。直接用列显示

SELECT* 
FROM( SELECT product_name, region, SALE_AMOUNT FROM sales_data ) PIVOT (sum( SALE_AMOUNT ) AS sum FOR ( product_name, region ) IN (( 'Product A', 'North' ) AS result1,( 'Product A', 'South' ) AS result2,( 'Product A', 'West' ) AS result3,( 'Product B', 'North' ) AS result4,( 'Product B', 'South' ) AS result5,( 'Product B', 'West' ) AS result16,( 'Product C', 'North' ) AS result7,( 'Product C', 'South' ) AS result8,( 'Product C', 'West' ) AS result9 ) )

总结

  1. pivot 函数是写在表名后面的,如果需要把源表过滤后再转换为列显示的需要嵌套子查询

  2. pivot 会以移出pivot_columnvalue_column剩下的字段组合成唯一键,每个唯一值占一行,查询每一组满足唯一键聚合函数的值。

  3. pivot 当使用多个聚合函数的时候至少需要指定一个 as

  4. pivotin 中是不支持使用子查询的,这是个缺点,但是也可以使用动态拼接的方式把想要转换为列的值拼接到这。

UNPIVOT

UNPIVOTPIVOT的相反操作。它用于将列数据转换为行数据。

将多列合并多为一列,合并为一列后自然需要多行才能展示全数据

语法

UNPIVOT(被合并列的列名 for 合并后的列名 in (被合并的列(),…))

SELECT* 
FROMtableName UNPIVOT ( fieldValueName FOR fieldName IN (  filedValue,...   ))
  • fieldValueName:被合并列的列名,可以随便起名称。
  • fieldName:合并后的列名,可以随便起名称。
  • filedValue:被合并的列。可以有多个。

准备

CREATE TABLE sales_by_region (product_name VARCHAR2(100),   -- 商品region_name VARCHAR2(50),	  -- 地区sales_q1 NUMBER,              -- 第一季度sales_q2 NUMBER,			  -- 第二季度sales_q3 NUMBER,              -- 第三季度sales_q4 NUMBER               -- 第四季度
);-- 商品 A 在不同地区的季度销售数据
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product A', 'North', 5000, 8000, 7000, 9000);
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product A', 'South', 7000, 7500, 8500, 9200);
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product A', 'West', 4500, 6000, 6200, 6900);-- 商品 B 在不同地区的季度销售数据
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product B', 'North', 6000, 7000, 7800, 8000);
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product B', 'South', 8000, 9000, 9200, 9500);
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product B', 'West', 5500, 6500, 6900, 7200);-- 商品 C 在不同地区的季度销售数据
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product C', 'North', 5500, 6500, 7200, 7800);
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product C', 'South', 6000, 7000, 7800, 8200);
INSERT INTO sales_by_region (product_name, region_name, sales_q1, sales_q2, sales_q3, sales_q4) VALUES ('Product C', 'West', 4800, 5800, 6000, 6500);

样例一

-- 普通查询
select * from sales_by_region

把四个季度的销售额合并到一个列中。

SELECT* 
FROMsales_by_region UNPIVOT (销售额 FOR 季度 IN (  sales_q1, sales_q2 , sales_q3, sales_q4 )

多个合并列

SELECT* 
FROMsales_by_region UNPIVOT ( (销售额1 ,销售额2 ) FOR 季度 IN ( ( sales_q1, sales_q2 ) as '上季度'  ,( sales_q3, sales_q4 ) as '下季度') );

上季度的销售额1 就相当于sales_q1,

上季度的销售额2 就相当于sales_q2,

下季度的销售额1 就相当于sales_q3,

下季度的销售额1 就相当于sales_q4,

有点绕,对应好即可。

总结

  1. unpivot函数也是写在表名后面,如果需要把源表过滤后再转换为列显示的需要嵌套子查询。(与pivot一样)
  2. unpivot会以移出被合并的列,然后将剩余的列组合成一个唯一值,每一个唯一值占一行。
  3. unpivot被合并的列的列名会在,fieldName中当做值来显示。
  4. 被合并的列可以通过 as 改变在fieldName显示的值。
  5. 大部分用法跟pivot一致,可以相互参考。
    ales_q3,

下季度的销售额1 就相当于sales_q4,

有点绕,对应好即可。

总结

  1. unpivot函数也是写在表名后面,如果需要把源表过滤后再转换为列显示的需要嵌套子查询。(与pivot一样)
  2. unpivot会以移出被合并的列,然后将剩余的列组合成一个唯一值,每一个唯一值占一行。
  3. unpivot被合并的列的列名会在,fieldName中当做值来显示。
  4. 被合并的列可以通过 as 改变在fieldName显示的值。
  5. 大部分用法跟pivot一致,可以相互参考。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/413647.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【webrtc】GCC 7: call模块创建的ReceiveSideCongestionController

webrtc 代码学习&#xff08;三十二&#xff09; video RTT 作用笔记 从call模块说起 call模块创建的时候&#xff0c;会创建 src\call\call.h 线程&#xff1a; 统计 const std::unique_ptr<CallStats> call_stats_;SendDelayStats &#xff1a; 发送延迟统计 const…

用Go plan9汇编实现斐波那契数列计算

斐波那契数列是一个满足递推关系的数列&#xff0c;如&#xff1a;1 1 2 3 5 8 ... 其前两项为1&#xff0c;第3项开始&#xff0c;每一项都是其前两项之和。 用Go实现一个简单的斐波那契计算逻辑 func fib(n int) int {if n 1 || n 2 {return 1}return fib(n-1) fib(n-2) …

RT-Thread experimental 代码学习(1)thread_sample

RTOS的最基础功能是线程。 线程的调度是如何工作的&#xff1f;RT-thread官方的实验文档是最好的参考。 老规矩&#xff0c;先放法国人doxygen。 thread_sample 代码的调用关系图 有意思的是&#xff0c;RT有两种创建线程的方式 - 静态和动态&#xff0c;粗略的理解是&…

Qt弹框展示

1.相关说明 文件选择弹框、目录选择弹框、保存文件弹框、颜色选择弹框、字体选择弹框、进度条弹框、输入对话框、标准消息框等 2.相关界面 3.相关代码 #include "widget.h" #include "ui_widget.h" #include <QFileDialog> #include <QProgressD…

Windows下安装alipay-sdk-python时,pycrypto安装报错问题处理

1、安装alipay-sdk-python 时&#xff0c;保存内容如下。 Building wheels for collected packages: pycryptoBuilding wheel for pycrypto (setup.py) ... error error: subprocess-exited-with-error python setup.py bdist_wheel did not run successfully.│ exit c…

Conway的生命游戏

文章目录 主要内容一.Conway的“生命游戏”1.玩法代码如下&#xff08;示例&#xff09;: 总结 主要内容 一.Conway的“生命游戏” 1.玩法 Conway的“生命游戏”是细胞自动机的一个例子&#xff1a;一组规则控制由离散细胞组成的区域的行为。在实践中&#xff0c;它会创建一个…

【办公类-21-02】20240118育婴员操作题word打印2.0

作品展示 把12页一套的操作题批量制作10份&#xff0c;便于打印 背景需求 将昨天整理的育婴师操作题共享&#xff0c; 因为题目里面有大量的红蓝颜色文字&#xff0c;中大班办公室都是黑白单面手动翻页打印。只有我待的教务室办公室有彩色打印机打印&#xff08;可以自动双面…

Gitlab添加ssh-key报500错误处理

Gitlab添加ssh-key报500错误 一、查看日志 发现Errno::Enoent(No such file or derectory -ssh): rootasu1:/home/caixin# tail -f /var/log/gitlab/gitlab-rails/production.log二、分析 根据日志提示&#xff0c;好像是缺少文件或目录&#xff0c;后面有个ssh,难首是依赖s…

CVE重要通用漏洞复现java php

在进行漏洞复现之前我们需要在linux虚拟机上进行docker的安装 我不喜欢win上安因为不知道为什么总是和我的vmware冲突 然后我的kali内核版本太低 我需要重新安装一个新的linux 并且配置网络 我相信这会话费我不少时间 查看版本 uname -a 需要5.5或以上的版本 看错了浪…

Leetcode2182. 构造限制重复的字符串

Every day a Leetcode 题目来源&#xff1a;2182. 构造限制重复的字符串 解法1&#xff1a;贪心 双指针 我们先用一个长度为 26 的数组 cnt 统计字符串 s 中每个字符出现的次数&#xff0c;然后从大到小枚举字母表的第 i 个字母&#xff0c;每次取出最多 min⁡(cnt[i], re…

React配置src根目录@

文章目录 1.打开webpack配置文件2.配置webpack 1.打开webpack配置文件 yarn eject or npm run eject 如果报错了记得提前 git commit一下 2.配置webpack 找到 webpack.config.js 文件在 webpack.config.js 文件中找到 alias 配置在alias里添加: path.resolve(src) , 或者 : pa…

密码学学习笔记(二十四):TCP/IP协议栈

TCP/IP协议栈的基础结构包括应用层、传输层、网络层、数据链路层和物理层。 应用层 应用层位于TCP/IP协议栈的最顶层&#xff0c;是用户与网络通信的接口。这一层包括了各种高级应用协议&#xff0c;如HTTP&#xff08;用于网页浏览&#xff09;、FTP&#xff08;用于文件传输…