JVM性能调优-垃圾收集器ZGC详解

 1. ZGC收集器(-XX:+UseZGC)

参考文章:Main - Main - OpenJDK Wiki

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf

ZGC是一款JDK 11中新加入的具有实验性质的低延迟垃圾收集器,ZGC可以说源自于是Azul System公司开发的C4(Concurrent Continuously Compacting Collector) 收集器。

0

1.1 ZGC目标

如下图所示,ZGC的目标主要有4个:

0

  • 支持TB量级的堆。我们生产环境的硬盘还没有上TB呢,这应该可以满足未来十年内,所有JAVA应用的需求了吧。 
  • 最大GC停顿时间不超10ms。目前一般线上环境运行良好的JAVA应用Minor GC停顿时间在10ms左右,Major GC一般都需要100ms以上(G1可以调节停顿时间,但是如果调的过低的话,反而会适得其反),之所以能做到这一点是因为它的停顿时间主要跟Root扫描有关,而Root数量和堆大小是没有任何关系的。 
  • 奠定未来GC特性的基础。
  • 最糟糕的情况下吞吐量会降低15%。这都不是事,停顿时间足够优秀。至于吞吐量,通过扩容分分钟解决。

另外,Oracle官方提到了它最大的优点是:它的停顿时间不会随着堆的增大而增长!也就是说,几十G堆的停顿时间是10ms以下,几百G甚至上T堆的停顿时间也是10ms以下。

1.2 不分代(暂时)

单代,即ZGC「没有分代」。我们知道以前的垃圾回收器之所以分代,是因为源于“「大部分对象朝生夕死」”的假设,事实上大部分系统的对象分配行为也确实符合这个假设。

那么为什么ZGC就不分代呢?因为分代实现起来麻烦,作者就先实现出一个比较简单可用的单代版本,后续会优化。

1.3 ZGC内存布局

ZGC收集器是一款基于Region内存布局的, 暂时不设分代的, 使用了读屏障、 颜色指针等技术来实现可并发的标记-整理算法的, 以低延迟为首要目标的一款垃圾收集器。

ZGC的Region可以具有如图3-19所示的大、 中、 小三类容量:

  • 小型Region(Small Region) : 容量固定为2MB, 用于放置小于256KB的小对象。
  • 中型Region(Medium Region) : 容量固定为32MB, 用于放置大于等于256KB但小于4MB的对象。
  • 大型Region(Large Region) : 容量不固定, 可以动态变化, 但必须为2MB的整数倍, 用于放置4MB或以上的大对象。 每个大型Region中只会存放一个大对象, 这也预示着虽然名字叫作“大型Region”, 但它的实际容量完全有可能小于中型Region, 最小容量可低至4MB。 大型Region在ZGC的实现中是不会被重分配(重分配是ZGC的一种处理动作, 用于复制对象的收集器阶段, 稍后会介绍到)的, 因为复制一个大对象的代价非常高昂。

0

1.4 NUMA-aware

NUMA对应的有UMA,UMA即Uniform Memory Access Architecture,NUMA就是Non Uniform Memory Access Architecture。UMA表示内存只有一块,所有CPU都去访问这一块内存,那么就会存在竞争问题(争夺内存总线访问权),有竞争就会有锁,有锁效率就会受到影响,而且CPU核心数越多,竞争就越激烈。NUMA的话每个CPU对应有一块内存,且这块内存在主板上离这个CPU是最近的,每个CPU优先访问这块内存,那效率自然就提高了:

0

服务器的NUMA架构在中大型系统上一直非常盛行,也是高性能的解决方案,尤其在系统延迟方面表现都很优秀。ZGC是能自动感知NUMA架构并充分利用NUMA架构特性的。

1.5 ZGC运作过程

ZGC的运作过程大致可划分为以下四个大的阶段:

0

  • 并发标记(Concurrent Mark):与G1一样,并发标记是遍历对象图做可达性分析的阶段,它的初始标记(Mark Start)和最终标记(Mark End)也会出现短暂的停顿,与G1不同的是, ZGC的标记是在指针上而不是在对象上进行的, 标记阶段会更新颜色指针(见下面详解)中的Marked 0、 Marked 1标志位。
  • 并发预备重分配(Concurrent Prepare for Relocate):这个阶段需要根据特定的查询条件统计得出本次收集过程要清理哪些Region,将这些Region组成重分配集(Relocation Set)。ZGC每次回收都会扫描所有的Region,用范围更大的扫描成本换取省去G1中记忆集的维护成本。
  • 并发重分配(Concurrent Relocate):重分配是ZGC执行过程中的核心阶段,这个过程要把重分配集中的存活对象复制到新的Region上,并为重分配集中的每个Region维护一个转发表(Forward Table),记录从旧对象到新对象的转向关系。ZGC收集器能仅从引用上就明确得知一个对象是否处于重分配集之中,如果用户线程此时并发访问了位于重分配集中的对象,这次访问将会被预置的内存屏障(读屏障(见下面详解))所截获,然后立即根据Region上的转发表记录将访问转发到新复制的对象上,并同时修正更新该引用的值,使其直接指向新对象,ZGC将这种行为称为指针的“自愈”(Self-Healing)能力。

ZGC的颜色指针因为“自愈”(Self-Healing)能力,所以只有第一次访问旧对象会变慢, 一旦重分配集中某个Region的存活对象都复制完毕后, 这个Region就可以立即释放用于新对象的分配,但是转发表还得留着不能释放掉, 因为可能还有访问在使用这个转发表。

  • 并发重映射(Concurrent Remap):重映射所做的就是修正整个堆中指向重分配集中旧对象的所有引用,但是ZGC中对象引用存在“自愈”功能,所以这个重映射操作并不是很迫切。ZGC很巧妙地把并发重映射阶段要做的工作,合并到了下一次垃圾收集循环中的并发标记阶段里去完成,反正它们都是要遍历所有对象的,这样合并就节省了一次遍历对象图的开销。一旦所有指针都被修正之后, 原来记录新旧对象关系的转发表就可以释放掉了。

1.6 颜色指针

Colored Pointers,即颜色指针,如下图所示,ZGC的核心设计之一。以前的垃圾回收器的GC信息都保存在对象头中,而ZGC的GC信息保存在指针中。

0

每个对象有一个64位指针,这64位被分为:

  • 18位:预留给以后使用;
  • 1位:Finalizable标识,此位与并发引用处理有关,它表示这个对象只能通过finalizer才能访问;
  • 1位:Remapped标识,设置此位的值后,对象未指向relocation set中(relocation set表示需要GC的Region集合);
  • 1位:Marked1标识;
  • 1位:Marked0标识,和上面的Marked1都是标记对象用于辅助GC;
  • 42位:对象的地址(所以它可以支持2^42=4T内存):

为什么有2个mark标记?

每一个GC周期开始时,会交换使用的标记位,使上次GC周期中修正的已标记状态失效,所有引用都变成未标记。

GC周期1:使用mark0, 则周期结束所有引用mark标记都会成为01。

GC周期2:使用mark1, 则期待的mark标记10,所有引用都能被重新标记。

通过对配置ZGC后对象指针分析我们可知,对象指针必须是64位,那么ZGC就无法支持32位操作系统,同样的也就无法支持压缩指针了(CompressedOops,压缩指针也是32位)。

颜色指针的三大优势:

  1. 一旦某个Region的存活对象被移走之后,这个Region立即就能够被释放和重用掉,而不必等待整个堆中所有指向该Region的引用都被修正后才能清理,这使得理论上只要还有一个空闲Region,ZGC就能完成收集。
  2. 颜色指针可以大幅减少在垃圾收集过程中内存屏障的使用数量,ZGC只使用了读屏障。
  3. 颜色指针具备强大的扩展性,它可以作为一种可扩展的存储结构用来记录更多与对象标记、重定位过程相关的数据,以便日后进一步提高性能。

1.7 读屏障

之前的GC都是采用Write Barrier,这次ZGC采用了完全不同的方案读屏障,这个是ZGC一个非常重要的特性。

在标记和移动对象的阶段,每次「从堆里对象的引用类型中读取一个指针」的时候,都需要加上一个Load Barriers。

那么我们该如何理解它呢?看下面的代码,第一行代码我们尝试读取堆中的一个对象引用obj.fieldA并赋给引用o(fieldA也是一个对象时才会加上读屏障)。如果这时候对象在GC时被移动了,接下来JVM就会加上一个读屏障,这个屏障会把读出的指针更新到对象的新地址上,并且把堆里的这个指针“修正”到原本的字段里。这样就算GC把对象移动了,读屏障也会发现并修正指针,于是应用代码就永远都会持有更新后的有效指针,而且不需要STW。

那么,JVM是如何判断对象被移动过呢?就是利用上面提到的颜色指针,如果指针是Bad Color,那么程序还不能往下执行,需要「slow path」,修正指针;如果指针是Good Color,那么正常往下执行即可:

0

❝ 这个动作是不是非常像JDK并发中用到的CAS自旋?读取的值发现已经失效了,需要重新读取。而ZGC这里是之前持有的指针由于GC后失效了,需要通过读屏障修正指针。❞ 

后面3行代码都不需要加读屏障:Object p = o这行代码并没有从堆中读取数据;o.doSomething()也没有从堆中读取数据;obj.fieldB不是对象引用,而是原子类型。

正是因为Load Barriers的存在,所以会导致配置ZGC的应用的吞吐量会变低。官方的测试数据是需要多出额外4%的开销:

0

那么,判断对象是Bad Color还是Good Color的依据是什么呢?就是根据上一段提到的Colored Pointers的4个颜色位。当加上读屏障时,根据对象指针中这4位的信息,就能知道当前对象是Bad/Good Color了。

PS:既然低42位指针可以支持4T内存,那么能否通过预约更多位给对象地址来达到支持更大内存的目的呢?答案肯定是不可以。因为目前主板地址总线最宽只有48bit,4位是颜色位,就只剩44位了,所以受限于目前的硬件,ZGC最大只能支持16T的内存,JDK13就把最大支持堆内存从4T扩大到了16T。

1.8 ZGC存在的问题

ZGC最大的问题是浮动垃圾。ZGC的停顿时间是在10ms以下,但是ZGC的执行时间还是远远大于这个时间的。假如ZGC全过程需要执行10分钟,在这个期间由于对象分配速率很高,将创建大量的新对象,这些对象很难进入当次GC,所以只能在下次GC的时候进行回收,这些只能等到下次GC才能回收的对象就是浮动垃圾。

ZGC没有分代概念,每次都需要进行全堆扫描,导致一些“朝生夕死”的对象没能及时的被回收。

解决方案

目前唯一的办法是增大堆的容量,使得程序得到更多的喘息时间,但是这个也是一个治标不治本的方案。如果需要从根本上解决这个问题,还是需要引入分代收集,让新生对象都在一个专门的区域中创建,然后专门针对这个区域进行更频繁、更快的收集。

1.9 ZGC参数设置

启用ZGC比较简单,设置JVM参数即可:-XX:+UnlockExperimentalVMOptions 「-XX:+UseZGC」。调优也并不难,因为ZGC调优参数并不多,远不像CMS那么复杂。它和G1一样,可以调优的参数都比较少,大部分工作JVM能很好的自动完成。下图所示是ZGC可以调优的参数:

0

1.10 ZGC触发时机

ZGC目前有4中机制触发GC:

  • 定时触发,默认为不使用,可通过ZCollectionInterval参数配置。
  • 预热触发,最多三次,在堆内存达到10%、20%、30%时触发,主要时统计GC时间,为其他GC机制使用。
  • 分配速率,基于正态分布统计,计算内存99.9%可能的最大分配速率,以及此速率下内存将要耗尽的时间点,在耗尽之前触发GC(耗尽时间 - 一次GC最大持续时间 - 一次GC检测周期时间)。
  • 主动触发,(默认开启,可通过ZProactive参数配置) 距上次GC堆内存增长10%,或超过5分钟时,对比距上次GC的间隔时间跟(49 * 一次GC的最大持续时间),超过则触发。

2. 如何选择垃圾收集器

  1. 优先调整堆的大小让服务器自己来选择
  2. 如果内存小于100M,使用串行收集器
  3. 如果是单核,并且没有停顿时间的要求,串行或JVM自己选择
  4. 如果允许停顿时间超过1秒,选择并行或者JVM自己选
  5. 如果响应时间最重要,并且不能超过1秒,使用并发收集器
  6. 4G以下可以用parallel,4-8G可以用ParNew+CMS,8G以上可以用G1,几百G以上用ZGC

下图有连线的可以搭配使用

0

JDK 1.8默认使用 Parallel(年轻代和老年代都是)

JDK 1.9默认使用 G1

3. 安全点与安全区域

安全点就是指代码中一些特定的位置,当线程运行到这些位置时它的状态是确定的,这样JVM就可以安全的进行一些操作,比如GC等,所以GC不是想什么时候做就立即触发的,是需要等待所有线程运行到安全点后才能触发。

这些特定的安全点位置主要有以下几种:

  1. 方法返回之前
  2. 调用某个方法之后
  3. 抛出异常的位置
  4. 循环的末尾

大体实现思想是当垃圾收集需要中断线程的时候, 不直接对线程操作, 仅仅简单地设置一个标志位, 各个线程执行过程时会不停地主动去轮询这个标志, 一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。 轮询标志的地方和安全点是重合的。

3.1 安全区域又是什么?

Safe Point 是对正在执行的线程设定的。

如果一个线程处于 Sleep 或中断状态,它就不能响应 JVM 的中断请求,再运行到 Safe Point 上。

因此 JVM 引入了 Safe Region。

Safe Region 是指在一段代码片段中,引用关系不会发生变化。在这个区域内的任意地方开始 GC 都是安全的。

 更多文章:

JVM性能调优-垃圾收集器G1详解-CSDN博客

JVM对象创建与内存分配机制分析-CSDN博客

Java中的Stop the World概念详解-CSDN博客

Java内存模型(JMM)详解-CSDN博客

如何在Linux上使用Java命令排查CPU和内存问题_visualvm217-CSDN博客

Arthas 工具介绍与实战-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/414671.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目管理十大知识领域之项目质量管理

一、项目质量管理概述 项目质量管理是指通过计划、组织、控制和监督项目过程,以确保项目满足特定的质量要求的一系列活动。项目质量管理是整个项目管理体系中不可或缺的一部分,它涉及到对项目所涉及的产品或服务的质量进行规划、控制和保证的过程。在项…

复制腾讯云服务器,启动后无法登陆问题

复制了一个腾讯云服务器,安全组也应用同一组,然而无法连接ssh服务。 登录腾讯云控制台,云服务器列表中找到该服务器,点击记录表该服务器记录的右侧“登录”。 选择vnc登录。 出现服务器终端界面,输入账号密码进入。…

uni-app小程序 uni.showToast字数超过两行自动省略显示不全问题

在实际开发过程中如果用户提交某些文件时,如果缺少某些条件我们要提醒用户缺少那些条件才能提交,但是如果我们用uni.showToast提醒的次数超过7个字的时候就会导致文字显示不全,达不到提醒的效果,这种时候我们就需要使用uni.showMo…

高级编程JavaScript中的数据类型?存储上能有什么差别?

在JavaScript中,我们可以分成两种类型: 基本类型复杂类型 两种类型的区别是:存储位置不同 一、基本类型 基本类型主要为以下6种: NumberStringBooleanUndefinednullsymbol Number 数值最常见的整数类型格式则为十进制&…

基于网络爬虫的微博热点分析,包括文本分析和主题分析

基于Python的网络爬虫的微博热点分析是一项技术上具有挑战性的任务。我们使用requests库来获取微博热点数据,并使用pandas对数据进行处理和分析。为了更好地理解微博热点话题,我们采用LDA主题分析方法,结合jieba分词工具将文本分割成有意义的…

Hugging Face怎么通过国内镜像去进行模型下载(hf-mirror.com)

一、引言 Hugging Face 🤗是一家专注于自然语言处理(NLP)技术的公司,以其开源贡献和先进的机器学习模型而闻名。该公司最著名的产品是 Transformers 库,这是一个广泛使用的 Python 库,它提供了大量预训练模…

MATLAB解决考研数学一题型(上)

闲来无事,情感问题和考研结束后的戒断反应比较严重,最近没有什么写博文的动力,抽空来整理一下考研初试前一直想做的工作——整理一下MATLAB解决数学一各题型的命令~ 本贴的目录遵循同济版的高数目录~ 目录 一.函数与极限 1.计算双侧极限 2…

目标文献分析方法

如何正确选题? 不仅仅是题目,而是研究工作的起步选题步骤? 发现问题选择方向调查研究分析论证确定选题 中国知网 深度学习方向词 1检索:深度学习 医疗影像 1 发表时间要最新 2 显示50个,全选 3 导出文献格式Ref 4 导…

node.js笔记(3)

在使用fs模块操作文件是,如果使用./或../开头的相对路径时,很容易出现路径动态拼接错误。原因是在代码运行的时候,会执行node命令所处的目录,动态拼接出被操作的完整路径。 const fsrequire(fs) fs.readFile(./files/1.txt,utf8,…

YOLOv8改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (支持检测、分割、关键点检测)

一、本文介绍 本文给大家带来的改进机制是二次创新的机制,二次创新是我们发表论文中关键的一环,本文给大家带来的二次创新机制是通过DiverseBranchBlock(DBB)模块来改进我们的检测头形成一个新的检测头Detect_DBB,其中DBB是一种重参数化模块,其训练时采用复杂结构,推理时…

houdini rnn

1.3.RNN模型_哔哩哔哩_bilibili 此公式来自于吴恩达P1.3视频 按公式推测rnn内部结构,如有错误,敬请指正

树莓派5:minio的SNMD模式实验

在刚才的“树莓派5试用体会-CSDN博客”这篇博文中提到了之前想用树莓派做minio单节点多驱动器的实验,这次终于在有奇葩的官方5V5A电源加持的树莓派5中找到了测试的可能性了。 Minio是一种开源对象存储。支持单节点单盘部署(入门体验)、单节点…