论文阅读笔记AI篇 —— Transformer模型理论+实战 (四)

论文阅读笔记AI篇 —— Transformer模型理论+实战 (四)

  • 一、理论
    • 1.1 理论研读
    • 1.2 什么是AI Agent?
  • 二、实战
    • 2.1 先导知识
      • 2.1.1 tensor的创建与使用
      • 2.1.2 PyTorch的模块
        • 2.1.2.1 torch.nn.Module类的继承与使用
        • 2.1.2.2 torch.nn.Linear类
    • 2.2 Transformer代码实现

一、理论

1.1 理论研读

参考文章或视频链接
[1] 《论文阅读笔记AI篇 —— Transformer模型理论+实战 (一)》- CSDN
[2] 《论文阅读笔记AI篇 —— Transformer模型理论+实战 (二)》- CSDN
[3] 《论文阅读笔记AI篇 —— Transformer模型理论+实战 (三)》- CSDN

1.2 什么是AI Agent?

如果说钢铁侠中的J.A.R.V.I.S.(贾维斯)是一个AGI通用人工智能的话,那么现阶段的AI Agent只是做到了感知任务、规划任务、执行任务。下面这张图的这个过程,看上去和强化学习是一模一样的。

Agent结构图——参考视频[1]

参考文章或视频链接
[1]【动画科普AI Agent:大模型之后为何要卷它?】- bilibili
[2]【【卢菁老师说】Agent就是一场彻头彻尾的AI泡沫】- bilibili
[3] 《读懂AI Agent:基于大模型的人工智能代理》
[4] LLM之Agent(一):使用GPT-4开启AutoGPT Agent自动化任务完整指南

二、实战

2.1 先导知识

2.1.1 tensor的创建与使用

对于一维的tensor,它是没有形状而言的,你不能准确的称它为行向量row vector或列向量col vector,只有你明确的指定之后,它才有准确的形状。
但是,在数学中肯定是要有明确的意义的,要么n*1,要么1*n,总得有个说法,说法就是,认为是列向量n*1,见参考文章[2]

import torch
import torch.nn as nndef test1_tensor():x = torch.tensor([1, 1, 1, 1])print("Before reshape:", x.shape)# x = x.reshape(4, 1)x = x.view(4, 1)  # 与reshape一样print(x)print("After reshape(4,1):", x.shape)# x = x.reshape(1, 4)x = x.view(1, 4)  # 与reshape一样print(x)print("After reshape(1,4):", x.shape)if __name__ == '__main__':test1_tensor()"""Console Output
Before reshape: torch.Size([4])tensor([[1],[1],[1],[1]])
After reshape(4,1): torch.Size([4, 1])tensor([[1, 1, 1, 1]])
After reshape(1,4): torch.Size([1, 4])
"""
参考文章或视频链接
[1] Introduction to PyTorch Tensors - PyTorch
[2] Is there any reason for using the word “column” in the context of one-dimensional tensor?

2.1.2 PyTorch的模块

2.1.2.1 torch.nn.Module类的继承与使用

强调一点,你自己实现的所有模块,应该都是继承了nn.Module这个Class的(这也是PyTorch官方文档所强调的),不要觉得可以去掉nn.Module的继承,继承了这个类,才会有一些便捷的方法可供调用,否则你都要自己实现一遍。

class Encoder(nn.Module): # (1)Encoder继承了nn.Moduledef __init__(self):# ...def forward(self, enc_inputs): # 你不需要显示调用该方法,因为在nn.Module.__call__里,已经默认实现了对该方法的调用# ...class Decoder(nn.Module): # (2)Decoder继承了nn.Moduledef __init__(self):# ...def forward(self, dec_inputs, enc_inputs, enc_outputs): # 你不需要显示调用该方法,因为在nn.Module.__call__里,已经默认实现了对该方法的调用# ...
参考文章或视频链接
[1] Module — PyTorch 2.1 documentation
[2] Learning Day 22: What is nn.Module in Pytorch
[3] Why do we need to inherit from nn.Module in PyTorch? - stackoverflow
2.1.2.2 torch.nn.Linear类

关于Linear层有一点问题,就是它的权重矩阵,nn.Linear(4,3)中的4表示输入特征的维度,3表示输出特征的维度,按理来说是一个4 * 3的矩阵才对,但是输出结果偏不,这是因为常规的线性运算是写成这样的(假设维度已知), o u t = W 3 ∗ 4 i n 4 ∗ 1 + b 3 ∗ 1 out = W_{3*4}in_{4*1} + b_{3*1} out=W34in41+b31,但网络层以从左至右的视角看去, i n in in W W W矩阵的左边,写成这样的形式 o u t = ( i n 1 ∗ 4 W 3 ∗ 4 T ) T + b 3 ∗ 1 = ( i n 1 ∗ 4 W 4 ∗ 3 ) T + b 3 ∗ 1 out = (in_{1*4}W_{3*4}^T)^T + b_{3*1} = (in_{1*4}W_{4*3})^T + b_{3*1} out=(in14W34T)T+b31=(in14W43)T+b31就很自然的模拟了这个视角,这样就能解释为什么输出的shape是反过来的。

在这里插入图片描述

请看参考文章[1]。

import torch
import torch.nn as nndef test2_Linear_weight():linear_layer = nn.Linear(4,3)print(linear_layer.shape)  # torch.Size([3, 4])
if __name__ == '__main__':test2_Linear_weight()
参考文章或视频链接
[1] Why does PyTorch’s Linear layer store the weight in shape (out, in) and transpose it in the forward pass? - stackoverflow

2.2 Transformer代码实现

请看参考文章[1]与[4],我认为写的足够详细,也足够易懂,有些torch.transpose()的操作不太好从字面上读懂,就debug看看,无非就是高维矩阵的转置,和二维矩阵的转置也没本质区别。

参考文章或视频链接
本文代码来源:[1] 《Transformer 代码详解(Pytorch版)》- CSDN
[2] 【Transformer代码实现】- bilibili
重点观看此视频:[3] [重置版]从零实现transfomer模型 || 理解ChatGPT基石 || pytorch- bilibili
这篇写的也不错,可以重点阅读:[4] 《Transformer原理与代码实现》- CSDN

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/419201.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LSTM学习笔记

上一篇文章中我们提到,CRNN模型中用于预测特征序列上下文的模块为双向LSTM模块,本篇中就来针对该模块的结构和实现做一些理解。 Bidirectional LSTM模块结构如下图所示: 在Pytorch中,已经集成了LSTM模块,定义如下&…

Python 自动化测试:数据驱动

软件质量。这种测试,在功能测试中非常耗费人力物力,但是在自动化中,却比较好实现,只要实现了测试操作步骤,然后将多组测试数据以数据驱动的形式注入,就可以实现了。 前面文章学习了参数化,当数…

关于常见分布式组件高可用设计原理的理解和思考

文章目录 1. 数据存储场景和存储策略1.1 镜像模式-小规模数据1.2 分片模式-大规模数据 2. 数据一致性和高可用问题2.1 镜像模式如何保证数据一致性2.2 镜像模式如何保证数据高可用2.2.1 HA模式2.2.2 分布式选主模式 2.3 分片模式如何数据一致性和高可用 3. 大规模数据集群的架构…

电子学会C/C++编程等级考试2023年12月(八级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:生理周期 人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,人会在相应的方面表现出色。例如,智力周期的高峰,人会思维敏捷,精力容易高度集…

『C++成长记』模板

🔥博客主页:小王又困了 📚系列专栏:C 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、泛型编程 二、函数模板 📒2.1函数模板概念 📒2.2函数…

C语言算法赛——蓝桥杯(省赛试题)

一、十四届C/C程序设计C组试题 十四届程序C组试题A#include <stdio.h> int main() {long long sum 0;int n 20230408;int i 0;// 累加从1到n的所有整数for (i 1; i < n; i){sum i;}// 输出结果printf("%lld\n", sum);return 0; }//十四届程序C组试题B…

vue2 点击按钮下载文件保存到本地(后台返回的zip压缩流)

// import ./mock/index.js; // 该项目所有请求使用mockjs模拟 去掉mock页面url下载 console.log(res, res)//token 是使页面不用去登录了if (res.file) {window.location.href Vue.prototype.$config.VUE_APP_BASE_IDSWAPI Vue.prototype.$config.VUE_APP_IDSW /service/mode…

Jetson Orin Nano安装OpenCV带cuda加速版本的全过程

安装过程 使用jetpack安装的jetson&#xff0c;自带了opencv&#xff0c;但是没有cuda加速的&#xff0c;输入opencv_version 使用jtop查看&#xff0c;可以确认自带的opencv是没用cuda的 卸载opencv&#xff0c;先查看有哪些包 pip3 list | grep opencv opencv-python 然后卸…

python系列-输入输出关系运算符算术运算符

&#x1f308;个人主页: 会编程的果子君​&#x1f4ab;个人格言:“成为自己未来的主人~” 目录 注释的语法 注释的规范 输入输出 通过控制台输出 通过控制台输入 运算符 算术运算符 关系运算符 注释的语法 python中有两种注释风格&#xff1a; 1.注释行&#xff1a;…

logstack 日志技术栈-04-opensource 开源工具 Syslog-ng+Highlight.io

5. Syslog-ng Syslog-ng 是一个开源的日志管理解决方案&#xff0c;主要用于收集和处理日志数据。它可以从多种源收集日志&#xff0c;包括系统日志、网络设备日志和第三方应用日志。 然后将日志解析、分类、重写和关联到统一格式中&#xff0c;然后将其存储或安全地传输到不同…

机器学习系统能在多大程度上理解数学

1.1 LLEMMA&#xff1a;一个开放的数学语言模型 论文地址&#xff1a;https://mathai2023.github.io/papers/45.pdf 代码地址&#xff1a;https://github.com/EleutherAI/math-lm 预训练数据集&#xff1a;https://huggingface.co/datasets/EleutherAI/proof-pile-2 文章提出了…

TensorRT模型优化部署 (八)--模型剪枝Pruning

系列文章目录 第一章 TensorRT优化部署&#xff08;一&#xff09;–TensorRT和ONNX基础 第二章 TensorRT优化部署&#xff08;二&#xff09;–剖析ONNX架构 第三章 TensorRT优化部署&#xff08;三&#xff09;–ONNX注册算子 第四章 TensorRT模型优化部署&#xff08;四&am…