SpikingJelly笔记之IFLIF神经元

文章目录

  • 前言
  • 一、脉冲神经元
  • 二、IF神经元
    • 1、神经元模型
    • 2、神经元仿真
  • 三、LIF神经元
    • 1、神经元模型
    • 2、神经元仿真
  • 总结


前言

记录整合发放(integrate-and-fire, IF)神经元与漏电整合发放(leaky integrate-and-fire, LIF)神经元模型,以及在SpikingJelly中的实现方法。


一、脉冲神经元

1、脉冲神经元:只输出脉冲(1/0)的神经元

spikingjelly.activation_based.neuron

2、阈下神经动态方程:神经元根据输入及自身状态更新膜电位

微分方程: d V ( t ) d t = f ( V ( t ) , X ( t ) ) \frac{dV(t)}{dt}=f(V(t),X(t)) dtdV(t)=f(V(t),X(t))

差分近似: V [ t ] = f ( V [ t − 1 ] , X [ t ] ) V[t]=f(V[t-1],X[t]) V[t]=f(V[t1],X[t])

3、计算步骤

X:输入
S:输出(0/1)
H:充电后、放电前的膜电位
V:放电后的膜电位

4、放电方程

def neuronal_fire(self):self.spike = self.surrogate_function(self.v - self.v_threshold)

surrogate_function:前向传播时为阶跃函数,膜电位超过阈值时输出为1

Θ ( x ) = { 1 , x ≥ 0 0 , x < 0 \Theta(x) = \left\{\begin{matrix} 1,\quad x\ge 0\\ 0,\quad x<0\\ \end{matrix}\right. Θ(x)={1,x00,x<0

5、重置方程

def neuronal_reset(self):if self.v_reset is None:self.v = self.v - self.spike * self.v_thresholdelse:self.v = (1. - self.spike) * self.v + self.spike * self.v_reset

膜电位达到阈值时神经元发放脉冲,膜电位恢复至静息值
v = { v − v t h r e s h o l d , v r e s e t = N o n e v r e s e t , o t h e r w i s e v = \left\{\begin{matrix} \begin{alignat*}{2} v-v_{threshold},&\quad v_{reset}=None\\ v_{reset},&\quad otherwise \end{alignat*} \end{matrix}\right. v={vvthreshold,vreset,vreset=Noneotherwise

二、IF神经元

1、神经元模型

(1)整合发放(integrate-and-fire)神经元:neuron.IFNode

理想积分器,无输入时膜电位保持恒定

(2)模型方程: I ( t ) = C d V ( t ) d t I(t)=C\frac{dV(t)}{dt} I(t)=CdtdV(t)

I(t):输入电流
V(t):膜电位
C:膜电容

(3)阈下神经动力学方程: H [ t ] = V [ t − 1 ] + X [ t ] H[t]=V[t-1]+X[t] H[t]=V[t1]+X[t]

(4)充电方程

def neuronal_charge(self, x: torch.Tensor):self.v = self.v + x

(5)构建IF神经元:layer = neuron.IFNode()

构造参数:
①v_threshold=1.0:阈值电压
②v_reset=0.0:重置电压
③surrogate_function=surrogate.Sigmoid():反向传播梯度替代函数
④step_mode=‘s’:步进模式,单步’s’,多步’m’
⑤store_v_seq=False:是否保存所有时间步的膜电位self.v

2、神经元仿真

(1)构建输入与神经元层,前50步输入为1,后50步输入为0

import torch
from torch import nn
from spikingjelly.activation_based import neuron, monitor, functional
from spikingjelly import visualizing
####################构建输入####################
T = 100 # 时间步数
N = 1 # 样本数目
D = 1 # 输入维度/神经元数目
x_seq1 = torch.ones(50, N, D)
x_seq2 = torch.zeros(50, N, D)
x_seq = torch.cat((x_seq1,x_seq2), 0)
# 构建一层IF神经元
net = nn.Sequential(neuron.IFNode(v_threshold=9.0,v_reset=0.0,step_mode='s',store_v_seq=False))
print(net)

神经元数量N由输入维度(T,N)确定
使用脉冲神经元代替神经网络的激活函数

(2)根据输入按时间步更新神经元膜电位与输出
单步模式(默认):逐步传播,深度优先遍历,内存占用小,适用于ANN2SNN
需要手动for循环按时间步计算

####################记录神经元状态####################
v_list = [] # 膜电位
s_list = [] # 神经元输出
####################单步模式:逐步传播####################
with torch.no_grad(): # 计算时关闭自动求导for i in range(T):y = net(x_seq[i])v_list.append(net[0].v)s_list.append(y)
functional.reset_net(net) # 重置神经元状态
####################可视化膜电位与输出####################
v_list = torch.cat(v_list).flatten()
s_list = torch.cat(s_list).flatten()
visualizing.plot_one_neuron_v_s(v_list.numpy(),s_list.numpy(),v_threshold=net[0].v_threshold,v_reset=net[0].v_reset,figsize=(12, 8),dpi=100)

脉冲神经元是有状态的(self.v)
输入一批样本后需要进行复位:functional.reset_net(net)

(3)网络结构

Sequential((0): IFNode(v_threshold=9.0, v_reset=0.0, detach_reset=False, step_mode=s, backend=torch(surrogate_function): Sigmoid(alpha=4.0, spiking=True))
)

4、各时间步神经元的膜电位与输出

三、LIF神经元

1、神经元模型

(1)漏电整合发放(leaky integrate-and-fire)神经元:neuron.LIFNode

引入漏电项,无输入时膜电位恢复至静息电位,模拟离子扩散

(2)模型方程:
I ( t ) − g ( V ( t ) − E ) = C d V ( t ) d t I(t)-g(V(t)-E)=C\frac{dV(t)}{dt} I(t)g(V(t)E)=CdtdV(t)

I(t):输入电流
V(t):膜电位
C:膜电容
g:泄漏电导
E:静息电位

(3)阈下神经动力学方程:

H [ t ] = { V [ t − 1 ] + X [ t ] − 1 τ ( V [ t − 1 ] − V r e s e t ) , d e c a y _ i n p u t = F a l s e V [ t − 1 ] + 1 τ ( X [ t ] − ( V [ t − 1 ] − V r e s e t ) ) , d e c a y _ i n p u t = T r u e H[t] = \left\{\begin{matrix} \begin{alignat*}{2} V[t-1]+X[t]-\frac{1}{\tau}(V[t-1]-V_{reset}),&\quad decay\_input=False\\ V[t-1]+\frac{1}{\tau}(X[t]-(V[t-1]-V_{reset})),&\quad decay\_input=True \end{alignat*} \end{matrix}\right. H[t]= V[t1]+X[t]τ1(V[t1]Vreset),V[t1]+τ1(X[t](V[t1]Vreset)),decay_input=Falsedecay_input=True

decay_input为False时,膜电位V的衰减由 1 τ ( V − V r e s e t ) \frac{1}{\tau}(V-V_{reset}) τ1(VVreset)控制
decay_input为True时,输入X[t]参与衰减,乘以系数 1 τ \frac{1}{\tau} τ1

(4)充电方程

def neuronal_charge(self, x: torch.Tensor):if self.decay_input:if self.v_reset is None or self.v_reset == 0.:self.v = self.v + (x - self.v) / self.tauelse:self.v = self.v + (x - (self.v - self.v_reset) / self.tauelse:if self.v_reset is None or self.v_reset == 0.:self.v = self.v + x - self.v / self.tauelse:self.v = self.v + x - (self.v - self.v_reset) / self.tau

(5)构建LIF神经元:layer = neuron.LIFNode()

构造参数:
①tau=2.0:膜电位时间常数
②decay_input=True:输入是否参与衰减
③v_threshold=1.0:阈值电压
④v_reset=0.0:重置电压
⑤surrogate_function=surrogate.Sigmoid():梯度替代函数
⑥step_mode=‘s’:步进模式
⑦store_v_seq=False:是否保存所有时间步的膜电位self.v

2、神经元仿真

(1)构建输入与神经元层,前50步输入为1,后50步输入为0

####################构建输入####################
T = 100 # 时间步数
N = 1 # 样本数目
D = 1 # 输入维度/神经元数目
x_seq1 = torch.ones(50, N, D)
x_seq2 = torch.zeros(50, N, D)
x_seq = torch.cat((x_seq1,x_seq2), 0)
# 构建一层LIF神经元
net = nn.Sequential(neuron.LIFNode(tau=10.0,decay_input=True,v_threshold=0.9,v_reset=0.0,step_mode='m',store_v_seq=True))
print(net)

(2)根据输入按时间步更新神经元膜电位与输出
多步模式:逐层传播,广度优先遍历,并行速度更快,适用于梯度替代法
直接计算,不需要手动写for循环

####################监视器记录神经元状态####################
# 记录膜电位
monitor_v = monitor.AttributeMonitor('v_seq',pre_forward=False,net=net,instance=neuron.LIFNode)
# 记录输出
monitor_o = monitor.OutputMonitor(net=net,instance=neuron.LIFNode)
####################多步模式:逐层传播####################
with torch.no_grad(): # 计算时关闭自动求导net(x_seq)
functional.reset_net(net) # 重置神经元状态
####################可视化膜电位与输出####################
v_list = monitor_v.records[0].flatten()
s_list = monitor_o.records[0].flatten()
visualizing.plot_one_neuron_v_s(v_list.numpy(),s_list.numpy(),v_threshold=net[0].v_threshold,v_reset=net[0].v_reset,figsize=(12, 8),dpi=100)

使用monitor监视器记录神经元输出与成员变量(膜电位)

(3)网络结构

Sequential((0): LIFNode(v_threshold=0.9, v_reset=0.0, detach_reset=False, step_mode=m, backend=torch, tau=10.0(surrogate_function): Sigmoid(alpha=4.0, spiking=True))
)

(4)各时间步神经元的膜电位与输出

输入为0时,膜电位自发泄漏

(5)当时间常数tau很大时,LIF神经元退化为IF神经元

net = nn.Sequential(neuron.LIFNode(tau=1.0e8,decay_input=False,v_threshold=9.0,v_reset=0.0,step_mode='m',store_v_seq=True))
Sequential((0): LIFNode(v_threshold=9.0, v_reset=0.0, detach_reset=False, step_mode=m, backend=torch, tau=100000000.0(surrogate_function): Sigmoid(alpha=4.0, spiking=True))
)


总结

不同神经元的主要差别在于阈下神经动力学方程(充电方程),而放电方程与重置方程相似;
IF神经元具有记忆效应,在无输入时,神经元膜电位会一直维持在当前状态;
LIF神经元引入漏电流项,在无输入时,膜电位会恢复至静息电位;
通过monitor和visualizing可以方便地监控和绘制神经元的膜电位与输出。

参考:
[1] SpikingJelly的文档——神经元
[2] 脉冲神经网络:模型、学习算法与应用
[3] 脉冲神经网络研究进展综述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/422264.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1.redhat网卡配置

想要通过cmd ping通redhat 1.在redhat输入:ifconfig 将自己主机网络适配器VMware Network Adapter VMnet1的IPv4配置在同一网段,掩码是255.255.255.0,所以最后一位不同就可以 推荐用FileZilla远程上传文件

Flash读取数据库中的数据

Flash读取数据库中的数据 要读取数据库的记录&#xff0c;首先需要建立一个数据库&#xff0c;并输入一些数据。数据库建立完毕后&#xff0c;由Flash向ASP提交请求&#xff0c;ASP根据请求对数据库进行操作后将结果返回给Flash&#xff0c;Flash以某种方式把结果显示出来。 …

网页无法访问但是有网什么原因

目录 1.运行网络诊断&#xff0c;确认原因 原因A.远程计算机或设备将不接受连接(该设备或资源(Web 代理)未设置为接受端口“7890”上的连接 原因B.DNS服务器未响应 场景A.其他的浏览器可以打开网页&#xff0c;自带的Edge却不行 方法A&#xff1a;关闭代理 Google自带翻译…

gitlab设置/修改克隆clone地址端口

直接看代码吧&#xff0c;最近写的太多了 修改前 修改后 vi /opt/gitlab/embedded/service/gitlab-rails/config/gitlab.yml 将port修改为自己在安装gitlab时映射的能够拉取到项目的端口即可 按esc后:wq后gitlab-ctl restart即可

20240122在WIN10下给GTX1080配置CUDA驱动

20240122在WIN10下给GTX1080配置CUDA驱动 2024/1/22 19:09 缘起&#xff1a;为了使用openai的whisper识别小语种【非英语】电影的字幕&#xff0c;决定开始折腾CUDA了&#xff01; https://github.com/openai/whisper https://www.bilibili.com/video/BV1d34y1F7qA https://ww…

Redis相关面试题大全

&#x1f4d5;作者简介&#xff1a; 过去日记&#xff0c;致力于Java、GoLang,Rust等多种编程语言&#xff0c;热爱技术&#xff0c;喜欢游戏的博主。 &#x1f4d7;本文收录于java面试题系列&#xff0c;大家有兴趣的可以看一看 &#x1f4d8;相关专栏Rust初阶教程、go语言基…

代码随想录算法训练营DAY24|回溯1

算法训练DAY24|回溯1 第77题. 组合 力扣题目链接 给定两个整数 n 和 k&#xff0c;返回 1 ... n 中所有可能的 k 个数的组合。 示例: 输入: n 4, k 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ] 上面我们说了要解决 n为100&#xff0c;k为50的情况&#xff0…

【Ubuntu】Ubuntu安装微信

1. 优麒麟 Wine &#xff08;“Wine Is Not an Emulator(Wine不是一个模拟器)” 的缩写&#xff09;是一个能够在多种 POSIX-compliant 操作系统&#xff08;诸如 Linux&#xff0c;Mac OSX 及 BSD 等&#xff09;上运行 Windows 应用的兼容层。银河麒麟的操作系统也是基于Ubu…

跟着pink老师前端入门教程-day07

去掉li前面的项目符号&#xff08;小圆点&#xff09; 语法&#xff1a;list-style: none; 十五、圆角边框 在CSS3中&#xff0c;新增了圆角边框样式&#xff0c;这样盒子就可以变成圆角 border-radius属性用于设置元素的外边框圆角 语法&#xff1a;border-radius:length…

【主题广范|见刊快】2024年生物信息学与智能系统国际学术会议(IACBIS 2024)

【主题广范|见刊快】2024年生物信息学与智能系统国际学术会议(IACBIS 2024) 2024 International Conference Bioinformatics and Intelligent Systems(IACBIS 2024) 一、【会议简介】 在2024年&#xff0c;一场全球瞩目的学术盛会将在某个繁华的都市中心举行。这次会议的主题是…

浅谈PCB设计与PCB制板的紧密关系

在现代电子领域&#xff0c;印刷电路板&#xff08;PCB&#xff09;是各种电子设备的核心组成部分。PCB设计和PCB制板是电子产品开发过程中不可或缺的两个重要环节。本文将深入探讨PCB设计与PCB制板之间的关系&#xff0c;以及如何通过协同工作实现高效的电子产品开发。 PCB设计…

《WebKit 技术内幕》之七(1): 渲染基础

《WebKit 技术内幕》之七&#xff08;1&#xff09;&#xff1a; 渲染基础 WebKit的布局计算使用 RenderObject 树并保存计算结果到 RenderObject 树。 RenderObject 树同其他树&#xff08;如 RenderLayer 树等&#xff09;&#xff0c;构成了 WebKit 渲染的为要基础设施。 1…