2017年认证杯SPSSPRO杯数学建模B题(第二阶段)岁月的印记全过程文档及程序

2017年认证杯SPSSPRO杯数学建模

B题 岁月的印记

原题再现:

  对同一个人来说,如果没有过改变面容的疾病、面部外伤或外科手术等经历,年轻和年老时的面容总有很大的相似性。人们在生活中也往往能够分辨出来两张不同年龄段的照片是不是同一个人。当然,年龄段相差越大,识别起来也就越困难。
  第二阶段问题: 我们希望通过一个人在年轻时的面部照片来预测其过若干年后的容貌,也希望做到通过一个人在较大年龄时的照片来还原其年轻时的容貌。请你建立合理的数学模型来完成这项任务。

整体求解过程概述(摘要)

  本文采用局域二值模式特征提取,SVM 支持向量机对图像人脸进行年龄预测,又利用人脸随着年龄的形状变化和纹理特征变化对不同目标年龄的人脸进行重构,还对重构后的人脸和真实人脸进行了相似度分析。
  首先,为了提高模型准确率,我们对图像进行灰度均衡化、旋转调整、尺度归一化处理。我们建立了基于局域二值模式的纹理特征提取模型,并且建立了基于 BP 神经网络贡献分析法对特征向量进行降维,得出额头、嘴巴、眼角等地方对年龄的影响较大,将原维数 256 维的纹理特征向量降到 30 维。我们将降维后的特征向量作为输入,训练了加权支持向量机的年龄估计函数。同时,我们利用 FG-NET 人脸数据库验证年龄估计的支持向量回归模型,准确率达到 76.2%,且误差控制在 3 岁以内。
  其次,我们选取 50 个特征点来标定人脸正面,得到了 8 个年龄段的平均脸型。接着我们建立了基于径向基函数的人脸形状变化模型,并计算出该年龄段人脸纹理特征向量,利用 LBP 算子提取的纹理特征与人脸型的变化相结合,进而重构了出目标年龄的人脸图像,其中人脸预测时进行的是纹理特征向量的叠加计算,人脸还原时进行的是纹理特征向量的差运算。
  最后,我们建立基于欧氏距离的照片相似度分析模型,对模型重构出的人脸与真实的人脸进行相似度分析,检验出模型的正确率在 58.6%。我们还分析了所建模型的优缺点,讨论了模型的推广应用。

问题分析:

  人脸图像识别问题是现今模式识别、图像处理等学科的一大研究热点,可以广泛的应用于安全部门、身份鉴别、电视会议、数字监控等领域。随着年龄的变化,人脸会发生变化,具体表现在色相衰老和皱纹的出现。本题要求我们在第一阶段的基础上,建立数学模型,解决通过一个人年轻时候来预测其若干年后的容貌,以及通过一个人在年老
时的照片来还原其年轻时候的容貌两个问题。
  首先,我们选取了 FG-NET 年龄人脸库,该人脸数据库中的人脸图像并不是在标准光线和标准角度中拍摄的,所以我们首先进行预处理,才能使用图像数据进行建模。但由于采集的图像往往会带有很多的噪声和干扰信号,因此对于采集的人脸图像,首先需要进行规范化处理,将外界的因素带来的影响提出,这里可以采用灰度化、集合规范化(图像的平移、旋转、缩放变化)、灰度规范化(即平滑、灰度均衡化)等预处理的方法。
  其次,要对图像进行面部特征提取和年龄估计,因为只有根据人脸的特征才能对其年龄进行合理的估计。可以使用 LBP 纹理特征提取算法,提取出人脸的纹理特征向量,并通过神经网络贡献分析法对特征向量作降维处理。对降维后的人脸纹理特征向量,可以使用 SVR 支持向量机回归模型, 以特征向量为输入对 SVR 进行训练,可以得到年龄估计模型。以此对图像的人脸进行较为准确的年龄估计。为下一步的人脸预测和人脸还原做准备。
  然后,是人脸的重构部分。由于人脸的变化主要表现为人脸形状随年龄的变化和人脸纹理特征(青春痘、皱纹等)随年龄的变化。因此,在确定目前人脸的年龄以后,就可以以此为基础,对人脸进行重构。这里的重构有两类,一类是对预测一张年轻的脸若干年后的容貌,令一类是还原一张年老的脸若干年前的容貌。重构主要包含有两个阶段,一是对人脸形状的改变,而是对人脸纹理的变化。在预测人脸的容貌时,只要利用该年龄段的人的脸形状变化后,叠加上预测年龄段的人脸纹理特征即可。对于还原人脸容貌,则要将人脸形状还原后,去除掉相应的纹理特征。
  最后,还要检验人脸重构是否合理,即检验重构后的人脸是否还是与原来的人脸是同一个,因此可以建立人脸相似度检验模型,对重构后的人脸和该年龄的人脸进行相似度分析,检验模型的准确性。

模型假设:

  1. 假设人的衰老是正常衰老,不考虑人的生病、吸烟、压力大等不良生活习惯造成的非正常变老。
  2. 假设本文所研究的人在成长过程中没有经历因为搬家等造成的生存环境的改变,外部环境对其造成的外貌的影响不予考虑。
  3. 假设选取的人脸图像样本采取时,没有意外伤害或病变导致的人脸局部区域的形状、颜色发生显著性改变
  4. 假采样人脸图像时,被采样者没有故意扭曲脸型,即为正常拍照。

论文缩略图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function [ opic ] = picInit( ipic )
%PICINIT 此函数用来预处理图片
mysize=size(ipic);
if numel(mysize)>2tmp = rgb2gray(ipic);% 将图像灰度化
elsetmp = ipic;
end
%灰度调整
gc = imadjust(tmp,[0.2, 0.6], [0, 1]);
opic = gc;
end
//----------------------------------------------------------------------------
function [out] = get_bar( pic )
%GET_LBR 此处显示有关此函数的摘要
% 此处显示详细说明
gpic = double(pic);
lw=int16(size(gpic,1)/7);
lh=int16(size(gpic,2)/7);
for i = 0:6for j = 0:6res = zeros(lh, lw);for x = i*lw+1:(i+1)*lwfor y = j*lh+1:(j+1)*lhif x > size(gpic, 1) || y > size(gpic, 2)continue; endres(x-i*lw,y-j*lh) = pic(x,y);endendtmp = get_barD(res);if i == 0 && j == 0out=tmp;elseout=array_add(out,tmp);endend
end
end
function [ opic ] = lbp( pic )
%LBP 进行 lbp 处理
tmp=pic;
for i = 2:size(pic,1)-1for j = 2:size(pic,2)-1res=0;for k=i-1:i+1for l=j-1:j+1if k==i && l == jcontinueendres=res*2;x = 0;
if pic(k,l)>pic(i,j)x=1;endres = res+x;endendtmp(i,j)=res;end
end
opic = tmp;
end
function [out] = get_bar( pic )
%GET_LBR 此处显示有关此函数的摘要
% 此处显示详细说明
gpic = double(pic);
lw=int16(size(gpic,1)/7);
lh=int16(size(gpic,2)/7);
for i = 0:6for j = 0:6res = zeros(lh, lw);for x = i*lw+1:(i+1)*lwfor y = j*lh+1:(j+1)*lhif x > size(gpic, 1) || y > size(gpic, 2)continue; endres(x-i*lw,y-j*lh) = pic(x,y);endendtmp = get_barD(res);if i == 0 && j == 0out=tmp;elseout=array_add(out,tmp);endend
end
end
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/422276.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构Java版(4)——链表

一、概述 链表是一种常见的数据结构,用于存储一系列具有相同类型的数据元素。它由多个节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。 链表与数组不同,它的节点在内存中不是连续存储的,而是通过每个节点中的指针…

详解SpringCloud微服务技术栈:一文速通RabbitMQ,入门到实践

👨‍🎓作者简介:一位大四、研0学生,正在努力准备大四暑假的实习 🌌上期文章:详解SpringCloud微服务技术栈:DockerCompose部署微服务集群 📚订阅专栏:微服务技术全家桶 希…

Joern环境的安装(Windows版)

Joern环境的安装(Windows版) 网上很少有关于Windows下安装Joern的教程,而我最初使用也是装在Ubuntu虚拟机中,这样使用很占内存,影响体验感。在Windows下使用源码安装Joern也是非常简单的过程: 提前需要的本地环境: …

优秘智能:颠覆传统广告模式,引领数字人口播潮流,助力企业高效推广!

随着人工智能技术的飞速发展,AI已经渗透到我们生活的方方面面。在这个数字化时代,优秘智能科技有限公司凭借其强大的研发实力和创新能力,成功研发出一款AI数字人口播短视频制作(制作;ai6ai69)平台&#xff…

前端开发 0: 前端环境搭建

欢迎来到我即将展开的一系列博客,将带你踏上前端开发的奇妙之旅!在这个数字化时代,前端开发成为了构建现代网页和应用程序的关键技能。无论你是刚刚入门还是已经有一些经验,这个系列将为你提供宝贵的知识和实用的技巧,…

MapReduce概述

文章目录 1. 分布式系统的驱动力和挑战2. 分布式系统的抽象和实现工具3. 可扩展性、可用性、一致性4. MapReduce基本工作方式5. Map函数和Reduce函数 1. 分布式系统的驱动力和挑战 分布式系统的核心是通过网络来协调,共同完成一致任务的一些计算机。构建分布式系统…

实现VLAN之间的路由

原理:路由器子接口 一个接口允许多个VLAN通过(避免占用物理路由器接口)。 目标 第 1 部分:单臂路由 第 2 部分:配置第三层交换机的路由端口 第 3 部分:带SVI的VLAN间路由 第 4 部分:补充知…

SpikingJelly笔记之IFLIF神经元

文章目录 前言一、脉冲神经元二、IF神经元1、神经元模型2、神经元仿真 三、LIF神经元1、神经元模型2、神经元仿真 总结 前言 记录整合发放(integrate-and-fire, IF)神经元与漏电整合发放(leaky integrate-and-fire, LIF)神经元模型,以及在SpikingJelly中的实现方法…

1.redhat网卡配置

想要通过cmd ping通redhat 1.在redhat输入:ifconfig 将自己主机网络适配器VMware Network Adapter VMnet1的IPv4配置在同一网段,掩码是255.255.255.0,所以最后一位不同就可以 推荐用FileZilla远程上传文件

Flash读取数据库中的数据

Flash读取数据库中的数据 要读取数据库的记录,首先需要建立一个数据库,并输入一些数据。数据库建立完毕后,由Flash向ASP提交请求,ASP根据请求对数据库进行操作后将结果返回给Flash,Flash以某种方式把结果显示出来。 …

网页无法访问但是有网什么原因

目录 1.运行网络诊断,确认原因 原因A.远程计算机或设备将不接受连接(该设备或资源(Web 代理)未设置为接受端口“7890”上的连接 原因B.DNS服务器未响应 场景A.其他的浏览器可以打开网页,自带的Edge却不行 方法A:关闭代理 Google自带翻译…

gitlab设置/修改克隆clone地址端口

直接看代码吧,最近写的太多了 修改前 修改后 vi /opt/gitlab/embedded/service/gitlab-rails/config/gitlab.yml 将port修改为自己在安装gitlab时映射的能够拉取到项目的端口即可 按esc后:wq后gitlab-ctl restart即可