windows上使用anconda安装tensorrt环境

windows上使用anconda安装tensorrt环境

    • 1 安装tensorrt
      • 1.1 下载最新的稳定的tensorrt 8.6.1(tensorrt对应的cuda、cudnn等版本是参考链接4)
      • 1.2 将tensorrt添加到环境变量
      • 1.3 安装tensorrt依赖
      • 1.4 安装Pycuda
      • 1.5 安装pytorch
    • 2 测试
      • 2.1 测试TensorRT 样例(这个测试主要来源于参考链接1)
      • 2.2 测试trtexec是否可以使用(这个测试主要来源于参考链接2)
        • 2.2.1 生成pytorch模型
        • 2.2.2 将pytorch模型转化为onnx
        • 2.2.3 将ONNX格式转成TensorRT格式
        • 2.2.4 测试生成的tensorrt模型
    • 3 容易出现的问题
      • 3.1 cuda 和 tensorrt 版本不匹配的问题
      • 3.2 出现编译和加载时不是同一个cuda cuBLAS/cuBLAS
    • 4 参考链接

本次使用的window环境是win 11,windows环境安装cuda(cuda版本为11.6.2)和cudnn(cudnn版本为8.8.0其实应该下载8.9.0tensorrt 8.6.1对应的cudnn版本是8.9.0,如下图1),anconda的安装就不用介绍了,如果不会安装,可以参考这篇文章
在这里插入图片描述 图 1 图1 1

1 安装tensorrt

1.1 下载最新的稳定的tensorrt 8.6.1(tensorrt对应的cuda、cudnn等版本是参考链接4)

从nvidia官方文件中可以看出,在windows上安装tensorrt只能通过Zip File Installation这个安装方式来进行安装。

  • 首先前往tensorrt官网下载,登录会出现不同版本的tensorrt资源,如图2,点击TensorRT 8
    在这里插入图片描述 图 2 图2 2
  • 然后,直接下载下图3中的TensorRT 8.6 GA for Windows 10 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8 ZIP Package
    在这里插入图片描述 图 3 图3 3

1.2 将tensorrt添加到环境变量

  • 下载完毕后,将其解压,并且进入lib子文件夹,如下图4所示,将路径D:\TensorRT-8.6.1.6\lib添加到系统环境变量中。
    在这里插入图片描述 图 4 图4 4

1.3 安装tensorrt依赖

创建一个anconda环境,python版本为python==3.10.12

conda create -n tensorrt python==3.10.12

激活环境

activate tensorrt

进入刚才解压后的TensorRT文件夹内的python子目录,根据python版本选择好对用的whl文件,如下图5所示,并执行下面代码

pip install D:\TensorRT-8.6.1.6\python\tensorrt-8.6.1-cp310-none-win_amd64.whl

在这里插入图片描述 图 5 图5 5上面代码执行结果如下所示

C:\Users\Administrator>conda create -n tensorrt python==3.10.12
Collecting package metadata (current_repodata.json): done
Solving environment: unsuccessful attempt using repodata from current_repodata.json, retrying with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done

1.4 安装Pycuda

前往下载Pycuda的网站,找到Pycuda,并点击Pycuda,就会跳到下图6下载Pycuda版本的网站,然后下载pycuda‑2022.1+cuda116‑cp310‑cp310‑win_amd64.whl
在这里插入图片描述 图 6 图6 6进入tensorrt的conda虚拟环境,输入以下代码指令安装Pycuda

pip install C:\Users\Administrator\Downloads\pycuda‑2022.1+cuda116‑cp310‑cp310‑win_amd64.whl

执行结果如下所示,就代表成功了

(tensorrt) C:\Users\Administrator>pip install C:\Users\Administrator\Downloads\pycuda-2022.1+cuda116-cp310-cp310-win_amd64.whl
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Processing c:\users\administrator\downloads\pycuda-2022.1+cuda116-cp310-cp310-win_amd64.whl
Collecting pytools>=2011.2 (from pycuda==2022.1+cuda116)Downloading pytools-2023.1.1-py2.py3-none-any.whl.metadata (2.7 kB)
Collecting appdirs>=1.4.0 (from pycuda==2022.1+cuda116)Downloading appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB)
Collecting mako (from pycuda==2022.1+cuda116)Downloading Mako-1.3.0-py3-none-any.whl.metadata (2.9 kB)
Requirement already satisfied: platformdirs>=2.2.0 in c:\users\administrator\appdata\roaming\python\python310\site-packages (from pytools>=2011.2->pycuda==2022.1+cuda116) (4.1.0)
Collecting typing-extensions>=4.0 (from pytools>=2011.2->pycuda==2022.1+cuda116)Downloading typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB)
Collecting MarkupSafe>=0.9.2 (from mako->pycuda==2022.1+cuda116)Downloading MarkupSafe-2.1.4-cp310-cp310-win_amd64.whl.metadata (3.1 kB)
Downloading pytools-2023.1.1-py2.py3-none-any.whl (70 kB)---------------------------------------- 70.6/70.6 kB 256.7 kB/s eta 0:00:00
Downloading Mako-1.3.0-py3-none-any.whl (78 kB)---------------------------------------- 78.6/78.6 kB 1.5 MB/s eta 0:00:00
Downloading MarkupSafe-2.1.4-cp310-cp310-win_amd64.whl (17 kB)
Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB)
Installing collected packages: appdirs, typing-extensions, MarkupSafe, pytools, mako, pycuda
Successfully installed MarkupSafe-2.1.4 appdirs-1.4.4 mako-1.3.0 pycuda-2022.1+cuda116 pytools-2023.1.1 typing-extensions-4.9.0

1.5 安装pytorch

进入tensorrt虚拟环境中,安装pytorch,注意这个安装pytorch,一定要使用pip的方式安装,不要使用conda的方式安装

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

安装成功后,可以查看pytorch的cuda是不是可以用

import torch
torch.cuda.is_available()  # 为True则可以用

2 测试

2.1 测试TensorRT 样例(这个测试主要来源于参考链接1)

tensorrt官方提供了可供测试的样例,进入刚才下载好的tensorrt文件夹下面的samples\python\network_api_pytorch_mnist目录下,这里我们选择一个手写数字识别的示例,如下图7所示。
在这里插入图片描述 图 7 图7 7拷贝路径,在tensorrt的虚拟环境下,cd 此路径,然后输入如下指令

python sample.py

执行结果如下,就代表成功了

(tensorrt) D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist>python sample.py
Train Epoch: 1 [0/60000 (0%)]   Loss: 2.292776
Train Epoch: 1 [6400/60000 (11%)]       Loss: 0.694761
Train Epoch: 1 [12800/60000 (21%)]      Loss: 0.316812
Train Epoch: 1 [19200/60000 (32%)]      Loss: 0.101704
Train Epoch: 1 [25600/60000 (43%)]      Loss: 0.087654
Train Epoch: 1 [32000/60000 (53%)]      Loss: 0.230672
Train Epoch: 1 [38400/60000 (64%)]      Loss: 0.189763
Train Epoch: 1 [44800/60000 (75%)]      Loss: 0.157570
Train Epoch: 1 [51200/60000 (85%)]      Loss: 0.043530
Train Epoch: 1 [57600/60000 (96%)]      Loss: 0.107672Test set: Average loss: 0.0927, Accuracy: 9732/10000 (97%)Train Epoch: 2 [0/60000 (0%)]   Loss: 0.049581
Train Epoch: 2 [6400/60000 (11%)]       Loss: 0.063095
Train Epoch: 2 [12800/60000 (21%)]      Loss: 0.086241
Train Epoch: 2 [19200/60000 (32%)]      Loss: 0.100145
Train Epoch: 2 [25600/60000 (43%)]      Loss: 0.087662
Train Epoch: 2 [32000/60000 (53%)]      Loss: 0.064293
Train Epoch: 2 [38400/60000 (64%)]      Loss: 0.053872
Train Epoch: 2 [44800/60000 (75%)]      Loss: 0.153787
Train Epoch: 2 [51200/60000 (85%)]      Loss: 0.065774
Train Epoch: 2 [57600/60000 (96%)]      Loss: 0.067333Test set: Average loss: 0.0520, Accuracy: 9835/10000 (98%)[01/26/2024-20:43:07] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:112: DeprecationWarning: Use set_memory_pool_limit instead.config.max_workspace_size = common.GiB(1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:75: DeprecationWarning: Use add_convolution_nd instead.conv1 = network.add_convolution(
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:78: DeprecationWarning: Use stride_nd instead.conv1.stride = (1, 1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:80: DeprecationWarning: Use add_pooling_nd instead.pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:81: DeprecationWarning: Use stride_nd instead.pool1.stride = (2, 2)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:85: DeprecationWarning: Use add_convolution_nd instead.conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:86: DeprecationWarning: Use stride_nd instead.conv2.stride = (1, 1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:88: DeprecationWarning: Use add_pooling_nd instead.pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:89: DeprecationWarning: Use stride_nd instead.pool2.stride = (2, 2)
[01/26/2024-20:43:11] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
Test Case: 2
Prediction: 2

2.2 测试trtexec是否可以使用(这个测试主要来源于参考链接2)

2.2.1 生成pytorch模型

使用pytorch官方提供的resnet34训练flower数据集,得到pytorch模型,代码来源https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_classification/Test5_resnet,flower数据集的来源也是这个链接的上一文件的readme.md,训练完成后,会得到resNet34.pth,如下图8所示
在这里插入图片描述 图 8 图8 8

2.2.2 将pytorch模型转化为onnx

这里就是以Pytorch官方提供的ResNet34为例(也就是上面代码训练好的resNet34.pth),直接从torchvision中实例化ResNet34并载入自己在flower_photos数据集上训练好的权重,然后在转成ONNX格式,示例代码如下:

import torch
import torch.onnx
import onnx
import onnxruntime
import numpy as np
from torchvision.models import resnet34device = torch.device("cpu")def to_numpy(tensor):return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()def main():weights_path = "resNet34.pth"onnx_file_name = "resnet34.onnx"batch_size = 1img_h = 224img_w = 224img_channel = 3# create model and load pretrain weightsmodel = resnet34(pretrained=False, num_classes=5)model.load_state_dict(torch.load(weights_path, map_location='cpu'))model.eval()# input to the model# [batch, channel, height, width]x = torch.rand(batch_size, img_channel, img_h, img_w, requires_grad=True)torch_out = model(x)# export the modeltorch.onnx.export(model,             # model being runx,                 # model input (or a tuple for multiple inputs)onnx_file_name,    # where to save the model (can be a file or file-like object)input_names=["input"],output_names=["output"],verbose=False)# check onnx modelonnx_model = onnx.load(onnx_file_name)onnx.checker.check_model(onnx_model)ort_session = onnxruntime.InferenceSession(onnx_file_name)# compute ONNX Runtime output predictionort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}ort_outs = ort_session.run(None, ort_inputs)# compare ONNX Runtime and Pytorch results# assert_allclose: Raises an AssertionError if two objects are not equal up to desired tolerance.np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)print("Exported model has been tested with ONNXRuntime, and the result looks good!")if __name__ == '__main__':main()

在运行上面代码之前,还得在tensorrt虚拟环境中安装onnx(onnx==1.12.0)和onnxruntime(onnxruntime==1.12.0)(onnx和onnxruntime的版本对应关系可以参考这个链接,当然如果要查看最新的版本的,可以直接google哦)

pip install onnx==1.12.0
pip install onnxruntime==1.12.0

注意,这里将Pytorch模型转成ONNX后,又利用ONNXRUNTIME载入导出的模型,然后输入同样的数据利用np.testing.assert_allclose方法对比转换前后输出的差异,其中rtol代表相对偏差,atol代表绝对偏差,如果两者的差异超出指定的精度则会报错。在转换后,会在当前文件夹中生成一个resnet34.onnx文件。

2.2.3 将ONNX格式转成TensorRT格式

将ONNX转成TensorRT engine的方式有多种,其中最简单的就是使用trtexec工具。在上面2.2.2章节中已经将Pyotrch中的Resnet34转成ONNX格式了,接下来可以直接使用trtexec工具将其转为TensorRT engine格式:

trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt

其中:

  • –onnx是指向生成的onnx模型文件路径
  • –saveEngine是保存TensorRT engine的文件路径(发现一个小问题,就是保存的目录必须提前创建好,如果没有创建的话就会报错)

在进行trtexec之前,还需要将trtexec.exeD:\TensorRT-8.6.1.6\bin添加到环境变量中,具体得添加过程就不赘述了,需要添加得路径如下图9所示
在这里插入图片描述 图 9 图9 9添加环境变量后,如果使用VScode,请务必将VScode关闭后,在再次打开在上述终端中执行指令;也可以通过win 11自带的cmd窗口执行上述命令,两种方法的都可以,执行结果如下所示:

(tensorrt) C:\Users\Administrator\Desktop\resnet>trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt
&&&& RUNNING TensorRT.trtexec [TensorRT v8601] # trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt
[01/26/2024-22:16:49] [I] === Model Options ===
[01/26/2024-22:16:49] [I] Format: ONNX
[01/26/2024-22:16:49] [I] Model: resnet34.onnx
[01/26/2024-22:16:49] [I] Output:
[01/26/2024-22:16:49] [I] === Build Options ===
[01/26/2024-22:16:49] [I] Max batch: explicit batch
[01/26/2024-22:16:49] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[01/26/2024-22:16:49] [I] minTiming: 1
[01/26/2024-22:16:49] [I] avgTiming: 8
[01/26/2024-22:16:49] [I] Precision: FP32
[01/26/2024-22:16:49] [I] LayerPrecisions:
[01/26/2024-22:16:49] [I] Layer Device Types:
[01/26/2024-22:16:49] [I] Calibration:
[01/26/2024-22:16:49] [I] Refit: Disabled
[01/26/2024-22:16:49] [I] Version Compatible: Disabled
[01/26/2024-22:16:49] [I] TensorRT runtime: full
[01/26/2024-22:16:49] [I] Lean DLL Path:
[01/26/2024-22:16:49] [I] Tempfile Controls: { in_memory: allow, temporary: allow }
[01/26/2024-22:16:49] [I] Exclude Lean Runtime: Disabled
[01/26/2024-22:16:49] [I] Sparsity: Disabled
[01/26/2024-22:16:49] [I] Safe mode: Disabled
[01/26/2024-22:16:49] [I] Build DLA standalone loadable: Disabled
[01/26/2024-22:16:49] [I] Allow GPU fallback for DLA: Disabled
[01/26/2024-22:16:49] [I] DirectIO mode: Disabled
[01/26/2024-22:16:49] [I] Restricted mode: Disabled
[01/26/2024-22:16:49] [I] Skip inference: Disabled
[01/26/2024-22:16:49] [I] Save engine: trt_output/resnet34.trt
[01/26/2024-22:16:49] [I] Load engine:
[01/26/2024-22:16:49] [I] Profiling verbosity: 0
[01/26/2024-22:16:49] [I] Tactic sources: Using default tactic sources
[01/26/2024-22:16:49] [I] timingCacheMode: local
[01/26/2024-22:16:49] [I] timingCacheFile:
[01/26/2024-22:16:49] [I] Heuristic: Disabled
[01/26/2024-22:16:49] [I] Preview Features: Use default preview flags.
[01/26/2024-22:16:49] [I] MaxAuxStreams: -1
[01/26/2024-22:16:49] [I] BuilderOptimizationLevel: -1
[01/26/2024-22:16:49] [I] Input(s)s format: fp32:CHW
[01/26/2024-22:16:49] [I] Output(s)s format: fp32:CHW
[01/26/2024-22:16:49] [I] Input build shapes: model
[01/26/2024-22:16:49] [I] Input calibration shapes: model
[01/26/2024-22:16:49] [I] === System Options ===
......
[01/26/2024-22:17:07] [I] Average on 10 runs - GPU latency: 2.13367 ms - Host latency: 2.35083 ms (enqueue 0.329321 ms)
[01/26/2024-22:17:07] [I]
[01/26/2024-22:17:07] [I] === Performance summary ===
[01/26/2024-22:17:07] [I] Throughput: 408.164 qps
[01/26/2024-22:17:07] [I] Latency: min = 2.1969 ms, max = 11.5844 ms, mean = 2.34914 ms, median = 2.26282 ms, percentile(90%) = 2.5896 ms, percentile(95%) = 2.74451 ms, percentile(99%) = 3.15137 ms
[01/26/2024-22:17:07] [I] Enqueue Time: min = 0.214111 ms, max = 11.3787 ms, mean = 0.462134 ms, median = 0.360229 ms, percentile(90%) = 0.757202 ms, percentile(95%) = 0.912842 ms, percentile(99%) = 1.60339 ms
[01/26/2024-22:17:07] [I] H2D Latency: min = 0.20166 ms, max = 0.341309 ms, mean = 0.229284 ms, median = 0.223328 ms, percentile(90%) = 0.264771 ms, percentile(95%) = 0.274536 ms, percentile(99%) = 0.304443 ms
[01/26/2024-22:17:07] [I] GPU Compute Time: min = 1.9906 ms, max = 11.3264 ms, mean = 2.11385 ms, median = 2.0265 ms, percentile(90%) = 2.33765 ms, percentile(95%) = 2.4895 ms, percentile(99%) = 2.89893 ms
[01/26/2024-22:17:07] [I] D2H Latency: min = 0.00415039 ms, max = 0.0593262 ms, mean = 0.00600404 ms, median = 0.00463867 ms, percentile(90%) = 0.0119629 ms, percentile(95%) = 0.0145569 ms, percentile(99%) = 0.0292969 ms
[01/26/2024-22:17:07] [I] Total Host Walltime: 3.0037 s
[01/26/2024-22:17:07] [I] Total GPU Compute Time: 2.59158 s
[01/26/2024-22:17:07] [W] * GPU compute time is unstable, with coefficient of variance = 15.3755%.
[01/26/2024-22:17:07] [W]   If not already in use, locking GPU clock frequency or adding --useSpinWait may improve the stability.
[01/26/2024-22:17:07] [I] Explanations of the performance metrics are printed in the verbose logs.
[01/26/2024-22:17:07] [I]
&&&& PASSED TensorRT.trtexec [TensorRT v8601] # trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt

执行结果生成的trt模型如下图10所示:
在这里插入图片描述 图 10 图10 10

2.2.4 测试生成的tensorrt模型

这个测试demo是参考链接2写的,在样例中对比ONNX和TensorRT的输出结果:

import numpy as np
import tensorrt as trt
import onnxruntime
import pycuda.driver as cuda
import pycuda.autoinitdef normalize(image: np.ndarray) -> np.ndarray:"""Normalize the image to the given mean and standard deviation"""image = image.astype(np.float32)mean = (0.485, 0.456, 0.406)std = (0.229, 0.224, 0.225)image /= 255.0image -= meanimage /= stdreturn imagedef onnx_inference(onnx_path: str, image: np.ndarray):# load onnx modelort_session = onnxruntime.InferenceSession(onnx_path)# compute onnx Runtime output predictionort_inputs = {ort_session.get_inputs()[0].name: image}res_onnx = ort_session.run(None, ort_inputs)[0]return res_onnxdef trt_inference(trt_path: str, image: np.ndarray):# Load the network in Inference Enginetrt_logger = trt.Logger(trt.Logger.WARNING)with open(trt_path, "rb") as f, trt.Runtime(trt_logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())with engine.create_execution_context() as context:# Set input shape based on image dimensions for inferencecontext.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))# Allocate host and device buffersbindings = []for binding in engine:binding_idx = engine.get_binding_index(binding)size = trt.volume(context.get_binding_shape(binding_idx))dtype = trt.nptype(engine.get_binding_dtype(binding))if engine.binding_is_input(binding):input_buffer = np.ascontiguousarray(image)input_memory = cuda.mem_alloc(image.nbytes)bindings.append(int(input_memory))else:output_buffer = cuda.pagelocked_empty(size, dtype)output_memory = cuda.mem_alloc(output_buffer.nbytes)bindings.append(int(output_memory))stream = cuda.Stream()# Transfer input data to the GPU.cuda.memcpy_htod_async(input_memory, input_buffer, stream)# Run inferencecontext.execute_async_v2(bindings=bindings, stream_handle=stream.handle)# Transfer prediction output from the GPU.cuda.memcpy_dtoh_async(output_buffer, output_memory, stream)# Synchronize the streamstream.synchronize()res_trt = np.reshape(output_buffer, (1, -1))return res_trtdef main():image_h = 224image_w = 224onnx_path = "resnet34.onnx"trt_path = "trt_output/resnet34.trt"image = np.random.randn(image_h, image_w, 3)normalized_image = normalize(image)# Convert the resized images to network input shape# [h, w, c] -> [c, h, w] -> [1, c, h, w]normalized_image = np.expand_dims(np.transpose(normalized_image, (2, 0, 1)), 0)onnx_res = onnx_inference(onnx_path, normalized_image)ir_res = trt_inference(trt_path, normalized_image)np.testing.assert_allclose(onnx_res, ir_res, rtol=1e-03, atol=1e-05)print("Exported model has been tested with TensorRT Runtime, and the result looks good!")if __name__ == '__main__':main()

执行结果如下:

(tensorrt) C:\Users\Administrator\Desktop\resnet>C:/ProgramData/anaconda3/envs/tensorrt/python.exe c:/Users/Administrator/Desktop/resnet/demo.py
[01/26/2024-22:19:08] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use get_tensor_name instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use set_input_shape instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:43: DeprecationWarning: Use get_tensor_name instead.binding_idx = engine.get_binding_index(binding)
c:\Users\Administrator\Desktop\resnet\demo.py:44: DeprecationWarning: Use get_tensor_shape instead.size = trt.volume(context.get_binding_shape(binding_idx))
c:\Users\Administrator\Desktop\resnet\demo.py:45: DeprecationWarning: Use get_tensor_dtype instead.dtype = trt.nptype(engine.get_binding_dtype(binding))
c:\Users\Administrator\Desktop\resnet\demo.py:46: DeprecationWarning: Use get_tensor_mode instead.if engine.binding_is_input(binding):
Exported model has been tested with TensorRT Runtime, and the result looks good!

这个结果已经是成功了,只不过里面还有一些瑕疵,如结果中提到的CUDA lazy loading is not enabled的问题,可以使用在win 11的系统变量中添加变量名为CUDA_MODULE_LOADING和变量值为LAZY,如下图11所示:
在这里插入图片描述 图 11 图11 11添加之后,再次执行代码,得到结果,可以看出,上面的CUDA lazy loading is not enabled的问题已经解决了,剩下的问题原因就是tensorrt的版本为最新的8.6.1,这个测试demo是来源于参考链接2,使用的tensorrt版本为8.2.5,8.2.5中的很多API接口在8.6.1中更新了,都已经需要被8.6.1中的代替,这个就不解决了。

(tensorrt) C:\Users\Administrator\Desktop\resnet>C:/ProgramData/anaconda3/envs/tensorrt/python.exe c:/Users/Administrator/Desktop/resnet/demo.py
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use get_tensor_name instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use set_input_shape instead.context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:43: DeprecationWarning: Use get_tensor_name instead.binding_idx = engine.get_binding_index(binding)
c:\Users\Administrator\Desktop\resnet\demo.py:44: DeprecationWarning: Use get_tensor_shape instead.size = trt.volume(context.get_binding_shape(binding_idx))
c:\Users\Administrator\Desktop\resnet\demo.py:45: DeprecationWarning: Use get_tensor_dtype instead.dtype = trt.nptype(engine.get_binding_dtype(binding))
c:\Users\Administrator\Desktop\resnet\demo.py:46: DeprecationWarning: Use get_tensor_mode instead.if engine.binding_is_input(binding):
Exported model has been tested with TensorRT Runtime, and the result looks good!

3 容易出现的问题

3.1 cuda 和 tensorrt 版本不匹配的问题

这个问题可能会导致在执行2.2测试的时候出现退出程序的问题,在断点调试的时候,应该会出现下面的问题,尽可能的让cuda和tensorrt的版本一致

trt.volume(context.get_binding_shape(binding_idx))
[WinError 10054] 远程主机强迫关闭了一个现有的连接。

3.2 出现编译和加载时不是同一个cuda cuBLAS/cuBLAS

即是下面的问题

[TRT] TensorRT was linked against cuBLAS/cuBLAS LT 11.6.3 but loaded cuBLAS/cuBLAS LT 11.5.1

最终要的解决方法前面已经提到过,就是anconda创建的虚拟环境tensorrt一定要使用pip安装pytorch,如果使用conda的方法安装pytorch,tensorrt会自动安装cudatoolkit,这可能会导致与win 11环境中安装的cuda版本不一致,导致出现上面的问题。
当然,如果不是上一段话引起的问题,使用pip的方法解决不了的话,可以阅读这一篇文章和这一篇文章。

4 参考链接

  1. TensorRT(一)Windows+Anaconda配置TensorRT环境 (Python版 )
  2. TensorRT安装记录(8.2.5)
  3. TensorRT的支持的cuda、cudnn等环境版本

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/434526.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++设计模式介绍:优雅编程的艺术

物以类聚 人以群分 文章目录 简介为什么有设计模式? 设计模式七大原则单一职责原则(Single Responsibility Principle - SRP)开放封闭原则(Open/Closed Principle - OCP)里氏替换原则(Liskov Substitution …

hardware simulation——编译框架搭建

目录 前言 学习Linux的makefile 规范化配置 文件生成过程描述 编码和验证 前言 编译框架搭建遇到了些问题,我对makefile不是那么熟练,能力只停留在能看懂和能改上自己独立写个大工程的编译框架有困难,所以这期我们一起看linux内核的编译…

Mac Monitor:一款为macOS安全研究量身定制的高级独立系统监控工具

关于Mac Monitor Mac Monitor是一款功能强大的高级独立系统安全监控工具,该工具专为macOS安全研究、恶意软件分类和系统故障排除而设计,主要基于Apple Endpoint Security(ES)实现其功能。 Mac Monitor能够收集各种类型的系统事件…

Nginx与keepalived实现集群

提醒一下:下面实例讲解是在mac虚拟机里的Ubuntu系统演示的; Nginx与keepalived实现集群实现的效果 两台服务器都安装Nginx与keepalived: master服务器的ip(192.168.200.2) backup服务器的ip(192.168.200.4) 将 master服务器Nginx与keepalive…

LeetCode.11. 盛最多水的容器

题目 题目链接 分析 这道题的意思就是让我们找两个下标,以这两个下标组成的线为底,高度取这两个位置对应数字的最小值为高,组成一个长方形,求长方形最大的面积可以为多少。 暴力的解法是什么??&#xf…

环形链表的检测与返回

环形链表 王赫辰/c语言 - Gitee.com 快慢指针的差距可以为除一以外的数吗?不可以如果差奇数则无法发现偶数环,是偶数无法发现奇数环,本题思路为指针相遇则为环,而以上两种情况会稳定差一,导致指针永不相遇 最终返回…

【C++中STL】list链表

List链表 基本概念构造函数赋值和交换大小操作插入和删除数据存取反转和排序 基本概念 将数据进行链式存储 链表list是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的,链表是由一系列结点组成,结点的组…

深度强化学习(王树森)笔记04

深度强化学习(DRL) 本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接:https://github.com/wangshusen/DRL 源代码链接:https://github.c…

字符串和C预处理器

本文参考C Primer Plus第四章学习 文章目录 常量和预处理器const限定符 1. 常量和预处理器 有时,在程序中要使用常量。例如,可以这样计算圆的周长: circumference 3.14159 * diameter; 这里,常量3.14159 代表著名的常量 pi(π)。…

5|领域建模实践(上):怎样既准确又深刻地理解业务知识?

上节课咱们完成了事件风暴,梳理了系统的行为需求。但你可能也发现了,其实还有些微妙的业务概念还没有澄清,这就要靠领域建模来完成了。 建立领域模型是 DDD 的核心。要建好领域建模,需要理论和实践相结合。由于我们的模型有一定的…

自动化测试业务价值思考和观点

对于自动化测试的价值如何体现,我的思考和观点主要有如下2点: 基于团队内部,从解决问题角度出发的技术落地实践和数据度量;基于跨团队合作,从KPI/OKR角度,用度量的数据来支撑你的价值传递; 接下来我会基于…

Rabbitmq调用FeignClient接口失败

文章目录 一、框架及逻辑介绍1.背景服务介绍2.问题逻辑介绍 二、代码1.A服务2.B服务3.C服务 三、解决思路1.确认B调用C服务接口是否能正常调通2.确认B服务是否能正常调用A服务3.确认消息能否正常消费4.总结 四、修改代码验证1.B服务异步调用C服务接口——失败2.将消费消息放到C…