【深度学习:t-SNE 】T 分布随机邻域嵌入

【深度学习:t-SNE 】T 分布随机邻域嵌入

    • 降低数据维度的目标
    • 什么是PCA和t-SNE,两者有什么区别或相似之处?
      • 主成分分析(PCA)
      • t-分布式随机邻域嵌入(t-SNE)
    • 在 MNIST 数据集上实现 PCA 和 t-SNE
    • 结论

了解 t-SNE 的基本原理、与 PCA 的区别以及如何在 MNIST 数据集上应用 t-SNE

在本文中,您将了解到

  • t-SNE 与 PCA(主成分分析)的区别
  • 简单易懂地解释 t-SNE 的工作原理
  • 了解 t-SNE 可用的不同参数
  • 在 MNIST 上应用 t-SNE 和 PCA

在这里插入图片描述
如果数据集中有数百个特征或数据点,而您想在二维或三维空间中表示它们,该怎么办?

在保留数据集中最多信息的同时降低数据集维度的两种常用技术是

  • 主成分分析(PCA)
  • 分布式随机邻域嵌入(t-SNE)

降低数据维度的目标

  • 在低维表示中尽可能多地保留高维数据中存在的数据的重要结构或信息。
  • 在较低维度上提高数据的可解释性
  • 最大限度地减少由于降维而导致的数据信息丢失

什么是PCA和t-SNE,两者有什么区别或相似之处?

PCA 和 t-SNE 都是无监督降维技术。这两种技术都用于将高维数据可视化到低维空间。

主成分分析(PCA)

  • 一种用于特征提取和可视化的无监督确定性算法
  • 应用线性降维技术,其重点是在低维空间中保持不同点之间的距离。
  • 通过使用特征值保留数据中的方差,将原始数据转换为新数据。
  • PCA 影响异常值。

t-分布式随机邻域嵌入(t-SNE)

  • 一种无监督的随机算法,仅用于可视化
  • 应用非线性降维技术,其重点是在低维空间中保持非常相似的数据点靠近。
  • 使用学生 t 分布来计算低维空间中两点之间的相似度,从而保留数据的局部结构。t-SNE 使用重尾 Student-t 分布而不是高斯分布来计算低维空间中两点之间的相似度,这有助于解决拥挤和优化问题。
  • 异常值不会影响 t-SNE

T 分布式随机邻域嵌入 (t-SNE) 是一种用于可视化的无监督机器学习算法,由 Laurens van der Maaten 和 Geoffrey Hinton 开发。

t-SNE 如何运作?

步骤 1:查找高维空间中邻近点之间的成对相似度。

t-SNE 将数据点 xᵢ 和 xⱼ 之间的高维欧氏距离转换为条件概率 P(j|i)。

在这里插入图片描述

高维空间中的数据(作者提供的图片)

xᵢ 会根据以点 xᵢ 为中心的高斯分布下的概率密度比例选择 xⱼ 作为其邻居。

σi 是以数据点习为中心的高斯方差

一对点的概率密度与其相似度成正比。对于附近的数据点,p(j|i) 将相对较高,而对于相距较远的点,p(j|i) 将很小。

对高维空间中的条件概率进行对称化,得到高维空间中最终的相似度。

条件概率通过对两个概率求平均值来实现对称,如下所示。

在这里插入图片描述

对称条件概率

步骤2:根据高维空间中点的成对相似度,将高维空间中的每个点映射到低维映射。

低维地图将是 2 维或 3 维地图

在这里插入图片描述
yᵢ 和 yⱼ 是高维数据点 xᵢ 和 xⱼ 的低维对应项。

我们计算类似于以点 yᵢ 为中心的高斯分布下的 P(j]i) 的条件概率 q(j|i),然后对概率进行对称化。

步骤 3:使用基于 Kullback-Leibler 散度(KL 散度)的梯度下降找到一个低维数据表示,以最小化 Pᵢⱼ 和 qᵢⱼ 之间的不匹配

在这里插入图片描述

Pᵢ 表示点 xᵢ 在所有其他数据点上的条件概率分布。 Qᵢ 表示给定地图点 yᵢ 的所有其他地图点的条件概率分布

t-SNE 使用梯度下降优化低维空间中的点。

为什么使用 KL 散度?

当我们最小化 KL 散度时,它使得 qᵢⱼ 在物理上与 Pᵢⱼ 相同,因此高维空间中的数据结构将与低维空间中的数据结构相似。

基于KL散度方程,

  • 如果 Pᵢⱼ 很大,那么我们需要很大的 qᵢⱼ 值来表示具有更高相似度的局部点。
  • 如果 Pᵢⱼ 很小,那么我们需要较小的 qᵢⱼ 值来表示相距较远的局部点。

步骤 4:使用 Student-t 分布计算低维空间中两点之间的相似度。

t-SNE 使用具有一个自由度的重尾 Student-t 分布来计算低维空间中两点之间的相似度,而不是高斯分布。

T-分布创建了低维空间中点的概率分布,这有助于减少拥挤问题。

如何在数据集上应用 t-SNE?

在用 python 编写代码之前,我们先了解一下可以使用的 TSNE 的一些关键参数

n_components:嵌入空间的维度,这是我们希望将高维数据转换为的较低维度。对于二维空间,默认值为 2。

Perplexity:困惑度与 t-SNE 算法中使用的最近邻居的数量有关。更大的数据集通常需要更大的困惑度。困惑度的值可以在 5 到 50 之间。默认值为 30。

n_iter:优化的最大迭代次数。应至少为 250,默认值为 1000

Learning_rate:t-SNE 的学习率通常在 [10.0, 1000.0] 范围内,默认值为 200.0。

在 MNIST 数据集上实现 PCA 和 t-SNE

我们将使用 sklearn.decomposition.PCA 应用 PCA,并在 MNIST 数据集上使用 sklearn.manifold.TSNE 实现 t-SNE。

加载 MNIST 数据

导入所需的库

import time
import numpy as np
import pandas as pd

获取 MNIST 训练和测试数据并检查训练数据的形状

(X_train, y_train) , (X_test, y_test) = mnist.load_data()
X_train.shape

在这里插入图片描述

创建一个包含多个图像和图像中的像素数的数组,并将 X_train 数据复制到 X

X = np.zeros((X_train.shape[0], 784))
for i in range(X_train.shape[0]):X[i] = X_train[i].flatten()

打乱数据集,取出 10% 的 MNIST 训练数据并将其存储在数据框中。

X = pd.DataFrame(X)
Y = pd.DataFrame(y_train)
X = X.sample(frac=0.1, random_state=10).reset_index(drop=True)
Y = Y.sample(frac=0.1, random_state=10).reset_index(drop=True)
df = X

数据准备好后,我们可以应用PCA和t-SNE。

在 MNIST 数据集上应用 PCA

使用 sklearn.decomposition 中的 PCA 库应用 PCA。

from sklearn.decomposition import PCA
time_start = time.time()
pca = PCA(n_components=2)
pca_results = pca.fit_transform(df.values)
print ('PCA done! Time elapsed: {} seconds'.format(time.time()-time_start))

在这里插入图片描述
PCA 生成两个维度,主成分 1 和主成分 2。将两个 PCA 成分与标签一起添加到数据框中。

pca_df = pd.DataFrame(data = pca_results, columns = ['pca_1', 'pca_2'])
pca_df['label'] = Y

仅在可视化时才需要该标签。

绘制 PCA 结果

fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1) 
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 2', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)
targets = [0,1,2,3,4,5,6,7,8,9]
colors=['yellow', 'black', 'cyan', 'green', 'blue', 'red', 'brown','crimson', 'gold', 'indigo']
for target, color in zip(targets,colors):indicesToKeep = pca_df['label'] == targetax.scatter(pca_df.loc[indicesToKeep, 'pca_1'], pca_df.loc[indicesToKeep, 'pca_2'], c = color, s = 50)
ax.legend(targets)
ax.grid()

在这里插入图片描述

在 MNIST 数据集上应用 t-SNE

导入 t-SNE 和可视化所需的库

import time
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
import matplotlib.patheffects as PathEffects
%matplotlib inline

首先使用默认参数创建 TSNE 实例,然后将高维图像输入数据拟合到嵌入空间中,并使用 fit_transform 返回转换后的输出。

图像数据的维度应为 (n_samples, n_features) 形状

time_start = time.time()
tsne = TSNE(random=0)
tsne_results = tsne.fit_transform(df.values)
print ('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start))

将标签添加到数据框中,并且仅在绘图期间使用它来标记集群以进行可视化。

df['label'] = Y

数据可视化功能

def plot_scatter(x, colors):# choose a color palette with seaborn.num_classes = len(np.unique(colors))palette = np.array(sns.color_palette("hls", num_classes))print(palette)# create a scatter plot.f = plt.figure(figsize=(8, 8))ax = plt.subplot(aspect='equal')sc = ax.scatter(x[:,0], x[:,1],  c=palette[colors.astype(np.int)], cmap=plt.cm.get_cmap('Paired'))plt.xlim(-25, 25)plt.ylim(-25, 25)ax.axis('off')ax.axis('tight')
# add the labels for each digit corresponding to the labeltxts = []
for i in range(num_classes):
# Position of each label at median of data points.
xtext, ytext = np.median(x[colors == i, :], axis=0)txt = ax.text(xtext, ytext, str(i), fontsize=24)txt.set_path_effects([PathEffects.Stroke(linewidth=5, foreground="w"),PathEffects.Normal()])txts.append(txt)
return f, ax, sc, txts

可视化 MNIST 数据集的 -SNE 结果

plot_scatter( tsne_results, df['label'])

在这里插入图片描述

尝试使用不同的参数值并观察不同的绘图

不同困惑值的可视化

在这里插入图片描述
n_iter 不同值的可视化

在这里插入图片描述
我们可以看到,从 t-SNE 图生成的聚类比使用 PCA 生成的聚类更加明确。

  • PCA 是确定性的,而 t-SNE 不是确定性的并且是随机的。
  • t-SNE 尝试仅映射局部邻居,而 PCA 只是我们初始协方差矩阵的对角旋转,特征向量表示并保留全局属性

结论

PCA和t-SNE是两种常见的降维方法,它们使用不同的技术将高维数据降维为可以可视化的低维数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/434558.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业培训革新:在线教育系统源码的全面解析

如今,在线教育系统的兴起为企业提供了全新的解决方案,使得培训不再受到时间和地域的限制。 一、在线教育系统的关键组成 在线教育系统的源码包含众多关键组成部分,其中包括: 1.1用户管理模块 用户管理模块负责管理学员和教员的…

单片机学习笔记---独立按键控制LED亮灭

直接进入正题! 今天开始我们要学习一个新的模块:独立按键! 先说独立按键的内部结构: 它相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实…

Leetcode—114. 二叉树展开为链表【中等】

2023每日刷题(九十八) Leetcode—114. 二叉树展开为链表 Morris-like算法思想 可以发现展开的顺序其实就是二叉树的先序遍历。算法和 94 题中序遍历的 Morris 算法有些神似,我们需要两步完成这道题。 将左子树插入到右子树的地方将原来的右…

JVM系列-7内存调优

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring原理、JUC原理、Kafka原理、分布式技术原理、数据库技术、JVM原理🔥如果感觉博主的文…

鸿蒙开发初体验

文章目录 前言一、环境配置1.1 安装DevEco Studio1.2 安装相关环境 二、工程创建三、工程结构介绍四、代码实现4.1 初识ArkTs4.2 具体实现 参考资料 前言 HarmonyOS是华为公司推出的一种操作系统,旨在为不同设备提供统一的操作系统和开发平台。鸿蒙开发的出现为用户…

CSS优先级内容

定义CSS样式时,经常出现两个或多个样式规则应用在同一元素的情况,这时就会出现优先级的情况,那么应用的元素应该显示哪一个样式呢? 一.下面举例对优先级进行具体讲解。 p{color:red;} .blue{color:orange;} #header{color:blu…

【Vue】1-2、Webpack 中的插件

一、Webpack 插件的作用 通过安装和配置第三方的插件,可以拓展 webpack 的能力,从而让 webpack 用起来更方便。 二、两个常用插件 1)webpack-dev-server 类似于 node.js 使用的 nodemon 工具 每当修改了源代码,webpack 会自动…

市场复盘总结 20240126

仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整,采用龙空龙模式 昨日主题投资 连板进级率 27/105 25.7% 二进三: 进级率低 50% 最常用的二种方法: 方…

QT + opengl 环境搭建(glfw, glad),创建一个简单窗口

一.下载glfw,glad并编译 1.glfw个人理解就是对底层opengl的一些基本接口的封装,提供了一些渲染物体所需的最低限度的接口。它允许用户创建OpenGL上下文、定义窗口参数以及处理用户输入。glfw的下载地址:Download | GLFW,下载完成后…

Qt编写手机端视频播放器/推流工具/Onvif工具

一、视频播放器 同时支持多种解码内核,包括qmedia内核(Qt4/Qt5/Qt6)、ffmpeg内核(ffmpeg2/ffmpeg3/ffmpeg4/ffmpeg5/ffmpeg6)、vlc内核(vlc2/vlc3)、mpv内核(mpv1/mp2)、…

设计模式分类

常用的设计模式有哪些? 常用的设计模式通常按照创建型、结构型和行为型三大类别来划分,以下是每个类别中的一些常见设计模式: 创建型(Creational Patterns): 单例模式(Singleton Pattern&…

Ultraleap 3Di新建项目之给所有的Joint挂载物体

工程文件 Ultraleap 3Di给所有的Joint挂载物体 前期准备 参考上一期文章,进行正确配置 Ultraleap 3Di配置以及在 Unity 中使用 Ultraleap 3Di手部跟踪 新建项目 初始项目如下: 新建Create Empty 将新建的Create Empty,重命名为LeapPro…