数学建模-------误差来源以及误差分析

绝对误差:精确值-近似值;

举个例子:从A到B,应该有73千米,但是我们近似成了70千米;从C到D,应该是1373千米,我们近似成了1370千米,如果使用绝对误差,结果都是3,显然无法衡量我们误差的大小,这个时候我们引入了相对误差;

相对误差:精确值-近似值/精确值;我们希望通过两者的界限可以相互转换,所以我们在实际计算时候,用绝对误差除以近似值就得到相对误差,这个时候如果我们知道绝对误差的界限,我们就可以得出相对误差的界限(通过证明可以利用无穷小得知,这样替换以后得到的相对误差会更小);

误差的种类:

(1)模型误差:就是建立模型时候,忽略掉的因素,比如自由落体的问题,我们忽略空气阻力建立的数学模型,这个过程所产生的误差就是模型误差;

(2)观测误差:那自由落体问题,计算下落时间,物体到地面的高度会有观测误差;

(3)方法误差:一个实际问题会有不同的解决方案,我们利用不同的方案,就会得到不同的精度,这个过程的误差叫做方法误差;

(4)舍入误差:就是由于计算机的四舍五入而产生的误差,我本来也是认为计算机不会四舍五入,老师讲解后才明白计算机的精度是有限的,当我们的计算超过计算机的精度的时候,计算机无法准确的计算,它会根据实际情况取舍,例如,有一个0~1之间数字超过计算机的精度,如果距离0更近,就按照0进行计算,否则就按照1进行计算;减小舍入误差的方法就是减少计算的时间,步骤;

误差的传播:

这里老师引入了一个误差传播系数的概念,通过它衡量单个误差对于结果误差的影响;

(1)加法:

例如1/3+2/3=1;其实计算机在进行计算时候,是进行了四舍五入的,因为1/3和2/3都无法精确地进行计算,这个时候1/3的误差是0.000.........3(因为真实值是无限无数的3,但是计算机只是取了有限位数;2/3再进行计算时误差是-0.0000.......3(因为真实值是无限位数的6,但是计算机取大了,误差是精确值减去近似值,所以是一个负数)两者在相加的过程中是完全抵消掉的,所以我们依然可以得出正确的答案;这里y的绝对误差是两者的代数和,是带有正负号的;所以两者相加时候,误差不一定会增加;

这里的系数就是误差传播系数,通过它来衡量单个误差对于结果误差的影响程度,通过放缩法可以得到相对误差一定是减小了的;

(2)减法:

同理可得,做减法的时候,当x1,x2很接近的时候,就会得到误差传播系数无穷大,扩大误差,因此,减小误差的手段就是避免两个十分相近的数字进行减法;两个相近的近似数做减法才有很大误差;

(3)乘法:

显而易见,X1的传播系数是X2,X2的误差传播系数是X1;因此减小乘法运算的误差就要避免2个绝对值很大的数字相乘;而相对误差是两个相对误差的代数和

(4)除法:

根据通式,分别对x1,x2求偏导数,减小误差的方法就是避免绝对值很小的数字做除法运算,通过凑配得出相对误差

算法的稳定性,收敛性:当我们计算第无穷项数之后,误差趋近于0时,我们称该算法是收敛的;

当输入的误差越小时候,输出的误差越小,我们称该算法是可控的,稳定的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/434646.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

轻松打卡:使用Spring Boot和Redis Bitmap构建高效签到系统【redis实战 四】

欢迎来到我的博客,代码的世界里,每一行都是一个故事 轻松打卡:使用Spring Boot和Redis Bitmap构建高效签到系统【redis实战 四】 引言(redis实战)前言回顾bitmap基本概念核心特性使用场景 为什么使用redis中的bitmap实现?1. 存储效…

20种常用的软件测试方法,建议先收藏再观看

在完整的项目当中算是最后一个环节,也是非常重要的一个环节。通过软件测试,我们才能得知一个程序是否符合标准。 小编整理出20种常见的软件测试方法,建议伙伴们先收藏再看。不敢说史上最全,但我办公室里十年软件测试经验的讲师都…

网络安全03---Nginx 解析漏洞复现

目录 一、准备环境 二、实验开始 2.1上传压缩包并解压 2.2进入目录,开始制作镜像 2.3可能会受之前环境影响,删除即可 ​编辑 2.4制作成功结果 2.5我们的环境一个nginx一个php 2.6访问漏洞 2.7漏洞触发结果 2.8上传代码不存在漏洞 2.9补充&#…

云手机哪一款好用?

随着海外市场的不断发展,云手机市场也呈现蓬勃的态势,众多云设备软件纷纷涌现。企业在选择云手机软件时,如何找到性能卓越的软件成为一项关键任务。在众多选择中,OgPhone云手机凭借其卓越的性能和独特功能脱颖而出。以下是OgPhone…

语义分割(3):损失函数解析

文章目录 1. 常见语义分割损失1.1 Cross Entropy1.2 dice Loss1.2.1 为什么使用Dice loss1.2.2 公式1.2.3 Dice loss 和 F1-score代码 1.3 focal loss1.3.1 公式:1.3.2 代码 2. 语义分割损失应用参考 语义分割任务实际上是一种像素层面上的分类,需要识别…

【HarmonyOS 4.0 应用开发实战】TypeScript 快速入门之环境配置

个人名片: 🐼作者简介:一名大三在校生,喜欢AI编程🎋 🐻‍❄️个人主页🥇:落798. 🐼个人WeChat:hmmwx53 🕊️系列专栏:🖼️…

【计网·湖科大·思科】实验三 总线型以太网的特性、集线器和交换机的区别、交换机的自学习算法

🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要&…

01 质数筛

一、根据概念进行枚举 1、判断质数的枚举算法 根据概念:除了1和它本身以外没有其他约数的数为质数 //输入一个数n&#xff0c;判断n是不是质数 #include<bits/stdc.h> using namespace std;int main(){int n;cin>>n;//根据概念:除了1和它本身以外没有其他约数的…

主成分分析(PCA)Python

实际问题研究中&#xff0c;常常遇到多变量问题&#xff0c;变量越多&#xff0c;问题往往越复杂&#xff0c;且各个变量之间往往有联系。于是&#xff0c;我们想到能不能用较少的新变量代替原本较多的旧变量&#xff0c;且使这些较少的新变量尽可能多地保留原来变量所反映的信…

代码随想录刷题笔记-Day12

1. 二叉树的递归遍历 144. 二叉树的前序遍历https://leetcode.cn/problems/binary-tree-preorder-traversal/94. 二叉树的中序遍历https://leetcode.cn/problems/binary-tree-inorder-traversal/145. 二叉树的后续遍历https://leetcode.cn/problems/binary-tree-postorder-tra…

第8章 异常

第8章 异常 学习目标 能够辨别程序中异常和错误 说出异常的分类 说出虚拟机处理异常的方式 列出常见的5个运行时异常 列出常见的5个编译时异常 能够使用try…catch关键字处理异常 能够使用throw抛出异常对象 能够使用throws关键字处理异常 能够自定义异常类 能够处理自定义异常…

小迪安全21WEB 攻防-JavaWeb 项目JWT 身份攻击组件安全访问控制

#知识点&#xff1a; 1、JavaWeb 常见安全及代码逻辑 2、目录遍历&身份验证&逻辑&JWT 3、访问控制&安全组件&越权&三方组件 Java&#xff1a;大部分都是第三方插件出现漏洞 webgoat的搭建&#xff1a;——java靶场 JDK版本要求&#xff1a;11.0…